Extensions 1→N→G→Q→1 with N=C10 and Q=C3×M4(2)

Direct product G=N×Q with N=C10 and Q=C3×M4(2)
dρLabelID
M4(2)×C30240M4(2)xC30480,935

Semidirect products G=N:Q with N=C10 and Q=C3×M4(2)
extensionφ:Q→Aut NdρLabelID
C101(C3×M4(2)) = C6×C4.F5φ: C3×M4(2)/C12C4 ⊆ Aut C10240C10:1(C3xM4(2))480,1048
C102(C3×M4(2)) = C6×C22.F5φ: C3×M4(2)/C2×C6C4 ⊆ Aut C10240C10:2(C3xM4(2))480,1058
C103(C3×M4(2)) = C6×C8⋊D5φ: C3×M4(2)/C24C2 ⊆ Aut C10240C10:3(C3xM4(2))480,693
C104(C3×M4(2)) = C6×C4.Dic5φ: C3×M4(2)/C2×C12C2 ⊆ Aut C10240C10:4(C3xM4(2))480,714

Non-split extensions G=N.Q with N=C10 and Q=C3×M4(2)
extensionφ:Q→Aut NdρLabelID
C10.1(C3×M4(2)) = C3×C20⋊C8φ: C3×M4(2)/C12C4 ⊆ Aut C10480C10.1(C3xM4(2))480,281
C10.2(C3×M4(2)) = C3×D10⋊C8φ: C3×M4(2)/C12C4 ⊆ Aut C10240C10.2(C3xM4(2))480,283
C10.3(C3×M4(2)) = C3×C10.C42φ: C3×M4(2)/C2×C6C4 ⊆ Aut C10480C10.3(C3xM4(2))480,282
C10.4(C3×M4(2)) = C3×Dic5⋊C8φ: C3×M4(2)/C2×C6C4 ⊆ Aut C10480C10.4(C3xM4(2))480,284
C10.5(C3×M4(2)) = C3×C23.2F5φ: C3×M4(2)/C2×C6C4 ⊆ Aut C10240C10.5(C3xM4(2))480,292
C10.6(C3×M4(2)) = C3×C20.8Q8φ: C3×M4(2)/C24C2 ⊆ Aut C10480C10.6(C3xM4(2))480,92
C10.7(C3×M4(2)) = C3×C408C4φ: C3×M4(2)/C24C2 ⊆ Aut C10480C10.7(C3xM4(2))480,93
C10.8(C3×M4(2)) = C3×D101C8φ: C3×M4(2)/C24C2 ⊆ Aut C10240C10.8(C3xM4(2))480,98
C10.9(C3×M4(2)) = C3×C42.D5φ: C3×M4(2)/C2×C12C2 ⊆ Aut C10480C10.9(C3xM4(2))480,81
C10.10(C3×M4(2)) = C3×C203C8φ: C3×M4(2)/C2×C12C2 ⊆ Aut C10480C10.10(C3xM4(2))480,82
C10.11(C3×M4(2)) = C3×C20.55D4φ: C3×M4(2)/C2×C12C2 ⊆ Aut C10240C10.11(C3xM4(2))480,108
C10.12(C3×M4(2)) = C15×C8⋊C4central extension (φ=1)480C10.12(C3xM4(2))480,200
C10.13(C3×M4(2)) = C15×C22⋊C8central extension (φ=1)240C10.13(C3xM4(2))480,201
C10.14(C3×M4(2)) = C15×C4⋊C8central extension (φ=1)480C10.14(C3xM4(2))480,208

׿
×
𝔽