Extensions 1→N→G→Q→1 with N=C5×C3⋊D4 and Q=C4

Direct product G=N×Q with N=C5×C3⋊D4 and Q=C4
dρLabelID
C20×C3⋊D4240C20xC3:D4480,807

Semidirect products G=N:Q with N=C5×C3⋊D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×C3⋊D4)⋊1C4 = F5×C3⋊D4φ: C4/C1C4 ⊆ Out C5×C3⋊D4608(C5xC3:D4):1C4480,1010
(C5×C3⋊D4)⋊2C4 = C3⋊D4⋊F5φ: C4/C1C4 ⊆ Out C5×C3⋊D4608(C5xC3:D4):2C4480,1012
(C5×C3⋊D4)⋊3C4 = Dic5×C3⋊D4φ: C4/C2C2 ⊆ Out C5×C3⋊D4240(C5xC3:D4):3C4480,627
(C5×C3⋊D4)⋊4C4 = Dic1517D4φ: C4/C2C2 ⊆ Out C5×C3⋊D4240(C5xC3:D4):4C4480,636
(C5×C3⋊D4)⋊5C4 = C5×Dic34D4φ: C4/C2C2 ⊆ Out C5×C3⋊D4240(C5xC3:D4):5C4480,760

Non-split extensions G=N.Q with N=C5×C3⋊D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×C3⋊D4).1C4 = C5⋊C8.D6φ: C4/C1C4 ⊆ Out C5×C3⋊D42408(C5xC3:D4).1C4480,1003
(C5×C3⋊D4).2C4 = D15⋊C8⋊C2φ: C4/C1C4 ⊆ Out C5×C3⋊D42408(C5xC3:D4).2C4480,1005
(C5×C3⋊D4).3C4 = D12.2Dic5φ: C4/C2C2 ⊆ Out C5×C3⋊D42404(C5xC3:D4).3C4480,362
(C5×C3⋊D4).4C4 = D12.Dic5φ: C4/C2C2 ⊆ Out C5×C3⋊D42404(C5xC3:D4).4C4480,364
(C5×C3⋊D4).5C4 = C5×D12.C4φ: C4/C2C2 ⊆ Out C5×C3⋊D42404(C5xC3:D4).5C4480,786
(C5×C3⋊D4).6C4 = C5×C8○D12φ: trivial image2402(C5xC3:D4).6C4480,780

׿
×
𝔽