Extensions 1→N→G→Q→1 with N=C3xD8 and Q=C10

Direct product G=NxQ with N=C3xD8 and Q=C10
dρLabelID
D8xC30240D8xC30480,937

Semidirect products G=N:Q with N=C3xD8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3xD8):1C10 = C5xC3:D16φ: C10/C5C2 ⊆ Out C3xD82404(C3xD8):1C10480,145
(C3xD8):2C10 = C5xS3xD8φ: C10/C5C2 ⊆ Out C3xD81204(C3xD8):2C10480,789
(C3xD8):3C10 = C5xD8:3S3φ: C10/C5C2 ⊆ Out C3xD82404(C3xD8):3C10480,791
(C3xD8):4C10 = C5xD8:S3φ: C10/C5C2 ⊆ Out C3xD81204(C3xD8):4C10480,790
(C3xD8):5C10 = C15xD16φ: C10/C5C2 ⊆ Out C3xD82402(C3xD8):5C10480,214
(C3xD8):6C10 = C15xC8:C22φ: C10/C5C2 ⊆ Out C3xD81204(C3xD8):6C10480,941
(C3xD8):7C10 = C15xC4oD8φ: trivial image2402(C3xD8):7C10480,940

Non-split extensions G=N.Q with N=C3xD8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3xD8).1C10 = C5xD8.S3φ: C10/C5C2 ⊆ Out C3xD82404(C3xD8).1C10480,146
(C3xD8).2C10 = C15xSD32φ: C10/C5C2 ⊆ Out C3xD82402(C3xD8).2C10480,215

׿
x
:
Z
F
o
wr
Q
<