Extensions 1→N→G→Q→1 with N=C10 and Q=C3xSD16

Direct product G=NxQ with N=C10 and Q=C3xSD16
dρLabelID
SD16xC30240SD16xC30480,938

Semidirect products G=N:Q with N=C10 and Q=C3xSD16
extensionφ:Q→Aut NdρLabelID
C10:1(C3xSD16) = C6xC40:C2φ: C3xSD16/C24C2 ⊆ Aut C10240C10:1(C3xSD16)480,695
C10:2(C3xSD16) = C6xD4.D5φ: C3xSD16/C3xD4C2 ⊆ Aut C10240C10:2(C3xSD16)480,726
C10:3(C3xSD16) = C6xQ8:D5φ: C3xSD16/C3xQ8C2 ⊆ Aut C10240C10:3(C3xSD16)480,734

Non-split extensions G=N.Q with N=C10 and Q=C3xSD16
extensionφ:Q→Aut NdρLabelID
C10.1(C3xSD16) = C3xC20.44D4φ: C3xSD16/C24C2 ⊆ Aut C10480C10.1(C3xSD16)480,94
C10.2(C3xSD16) = C3xC40:6C4φ: C3xSD16/C24C2 ⊆ Aut C10480C10.2(C3xSD16)480,95
C10.3(C3xSD16) = C3xD20:5C4φ: C3xSD16/C24C2 ⊆ Aut C10240C10.3(C3xSD16)480,99
C10.4(C3xSD16) = C3xC10.Q16φ: C3xSD16/C3xD4C2 ⊆ Aut C10480C10.4(C3xSD16)480,88
C10.5(C3xSD16) = C3xD4:Dic5φ: C3xSD16/C3xD4C2 ⊆ Aut C10240C10.5(C3xSD16)480,110
C10.6(C3xSD16) = C3xC20.Q8φ: C3xSD16/C3xQ8C2 ⊆ Aut C10480C10.6(C3xSD16)480,86
C10.7(C3xSD16) = C3xD20:6C4φ: C3xSD16/C3xQ8C2 ⊆ Aut C10240C10.7(C3xSD16)480,87
C10.8(C3xSD16) = C3xQ8:Dic5φ: C3xSD16/C3xQ8C2 ⊆ Aut C10480C10.8(C3xSD16)480,113
C10.9(C3xSD16) = C15xD4:C4central extension (φ=1)240C10.9(C3xSD16)480,205
C10.10(C3xSD16) = C15xQ8:C4central extension (φ=1)480C10.10(C3xSD16)480,206
C10.11(C3xSD16) = C15xC4.Q8central extension (φ=1)480C10.11(C3xSD16)480,209

׿
x
:
Z
F
o
wr
Q
<