Extensions 1→N→G→Q→1 with N=D5⋊C8 and Q=S3

Direct product G=N×Q with N=D5⋊C8 and Q=S3
dρLabelID
S3×D5⋊C81208S3xD5:C8480,986

Semidirect products G=N:Q with N=D5⋊C8 and Q=S3
extensionφ:Q→Out NdρLabelID
D5⋊C81S3 = D12⋊F5φ: S3/C3C2 ⊆ Out D5⋊C81208+D5:C8:1S3480,228
D5⋊C82S3 = D12.2F5φ: S3/C3C2 ⊆ Out D5⋊C82408-D5:C8:2S3480,987
D5⋊C83S3 = D60.C4φ: S3/C3C2 ⊆ Out D5⋊C82408+D5:C8:3S3480,990
D5⋊C84S3 = C5⋊C8⋊D6φ: S3/C3C2 ⊆ Out D5⋊C81208D5:C8:4S3480,993

Non-split extensions G=N.Q with N=D5⋊C8 and Q=S3
extensionφ:Q→Out NdρLabelID
D5⋊C8.1S3 = Dic30⋊C4φ: S3/C3C2 ⊆ Out D5⋊C81208-D5:C8.1S3480,230
D5⋊C8.2S3 = C30.4C42φ: S3/C3C2 ⊆ Out D5⋊C81208D5:C8.2S3480,226
D5⋊C8.3S3 = C30.C42φ: trivial image1208D5:C8.3S3480,224

׿
×
𝔽