Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C5xDic3

Direct product G=NxQ with N=C2xC4 and Q=C5xDic3
dρLabelID
Dic3xC2xC20480Dic3xC2xC20480,801

Semidirect products G=N:Q with N=C2xC4 and Q=C5xDic3
extensionφ:Q→Aut NdρLabelID
(C2xC4):(C5xDic3) = C5xC23.7D6φ: C5xDic3/C15C4 ⊆ Aut C2xC41204(C2xC4):(C5xDic3)480,153
(C2xC4):2(C5xDic3) = C5xC6.C42φ: C5xDic3/C30C2 ⊆ Aut C2xC4480(C2xC4):2(C5xDic3)480,150
(C2xC4):3(C5xDic3) = C10xC4:Dic3φ: C5xDic3/C30C2 ⊆ Aut C2xC4480(C2xC4):3(C5xDic3)480,804
(C2xC4):4(C5xDic3) = C5xC23.26D6φ: C5xDic3/C30C2 ⊆ Aut C2xC4240(C2xC4):4(C5xDic3)480,805

Non-split extensions G=N.Q with N=C2xC4 and Q=C5xDic3
extensionφ:Q→Aut NdρLabelID
(C2xC4).(C5xDic3) = C5xC12.10D4φ: C5xDic3/C15C4 ⊆ Aut C2xC42404(C2xC4).(C5xDic3)480,155
(C2xC4).2(C5xDic3) = C5xC42.S3φ: C5xDic3/C30C2 ⊆ Aut C2xC4480(C2xC4).2(C5xDic3)480,122
(C2xC4).3(C5xDic3) = C5xC12.55D4φ: C5xDic3/C30C2 ⊆ Aut C2xC4240(C2xC4).3(C5xDic3)480,149
(C2xC4).4(C5xDic3) = C5xC12:C8φ: C5xDic3/C30C2 ⊆ Aut C2xC4480(C2xC4).4(C5xDic3)480,123
(C2xC4).5(C5xDic3) = C5xC12.C8φ: C5xDic3/C30C2 ⊆ Aut C2xC42402(C2xC4).5(C5xDic3)480,131
(C2xC4).6(C5xDic3) = C10xC4.Dic3φ: C5xDic3/C30C2 ⊆ Aut C2xC4240(C2xC4).6(C5xDic3)480,800
(C2xC4).7(C5xDic3) = C20xC3:C8central extension (φ=1)480(C2xC4).7(C5xDic3)480,121
(C2xC4).8(C5xDic3) = C10xC3:C16central extension (φ=1)480(C2xC4).8(C5xDic3)480,130
(C2xC4).9(C5xDic3) = C2xC10xC3:C8central extension (φ=1)480(C2xC4).9(C5xDic3)480,799

׿
x
:
Z
F
o
wr
Q
<