Extensions 1→N→G→Q→1 with N=C48 and Q=D5

Direct product G=N×Q with N=C48 and Q=D5
dρLabelID
D5×C482402D5xC48480,75

Semidirect products G=N:Q with N=C48 and Q=D5
extensionφ:Q→Aut NdρLabelID
C481D5 = D240φ: D5/C5C2 ⊆ Aut C482402+C48:1D5480,159
C482D5 = C48⋊D5φ: D5/C5C2 ⊆ Aut C482402C48:2D5480,160
C483D5 = C3×D80φ: D5/C5C2 ⊆ Aut C482402C48:3D5480,77
C484D5 = C3×C16⋊D5φ: D5/C5C2 ⊆ Aut C482402C48:4D5480,78
C485D5 = C16×D15φ: D5/C5C2 ⊆ Aut C482402C48:5D5480,157
C486D5 = C80⋊S3φ: D5/C5C2 ⊆ Aut C482402C48:6D5480,158
C487D5 = C3×C80⋊C2φ: D5/C5C2 ⊆ Aut C482402C48:7D5480,76

Non-split extensions G=N.Q with N=C48 and Q=D5
extensionφ:Q→Aut NdρLabelID
C48.1D5 = Dic120φ: D5/C5C2 ⊆ Aut C484802-C48.1D5480,161
C48.2D5 = C3×Dic40φ: D5/C5C2 ⊆ Aut C484802C48.2D5480,79
C48.3D5 = C153C32φ: D5/C5C2 ⊆ Aut C484802C48.3D5480,3
C48.4D5 = C3×C52C32central extension (φ=1)4802C48.4D5480,2

׿
×
𝔽