Extensions 1→N→G→Q→1 with N=C80 and Q=S3

Direct product G=N×Q with N=C80 and Q=S3
dρLabelID
S3×C802402S3xC80480,116

Semidirect products G=N:Q with N=C80 and Q=S3
extensionφ:Q→Aut NdρLabelID
C801S3 = D240φ: S3/C3C2 ⊆ Aut C802402+C80:1S3480,159
C802S3 = C48⋊D5φ: S3/C3C2 ⊆ Aut C802402C80:2S3480,160
C803S3 = C5×D48φ: S3/C3C2 ⊆ Aut C802402C80:3S3480,118
C804S3 = C16×D15φ: S3/C3C2 ⊆ Aut C802402C80:4S3480,157
C805S3 = C80⋊S3φ: S3/C3C2 ⊆ Aut C802402C80:5S3480,158
C806S3 = C5×C48⋊C2φ: S3/C3C2 ⊆ Aut C802402C80:6S3480,119
C807S3 = C5×D6.C8φ: S3/C3C2 ⊆ Aut C802402C80:7S3480,117

Non-split extensions G=N.Q with N=C80 and Q=S3
extensionφ:Q→Aut NdρLabelID
C80.1S3 = Dic120φ: S3/C3C2 ⊆ Aut C804802-C80.1S3480,161
C80.2S3 = C5×Dic24φ: S3/C3C2 ⊆ Aut C804802C80.2S3480,120
C80.3S3 = C153C32φ: S3/C3C2 ⊆ Aut C804802C80.3S3480,3
C80.4S3 = C5×C3⋊C32central extension (φ=1)4802C80.4S3480,1

׿
×
𝔽