Extensions 1→N→G→Q→1 with N=C6 and Q=C4.F5

Direct product G=N×Q with N=C6 and Q=C4.F5
dρLabelID
C6×C4.F5240C6xC4.F5480,1048

Semidirect products G=N:Q with N=C6 and Q=C4.F5
extensionφ:Q→Aut NdρLabelID
C61(C4.F5) = C2×Dic3.F5φ: C4.F5/C5⋊C8C2 ⊆ Aut C6240C6:1(C4.F5)480,1009
C62(C4.F5) = C2×C12.F5φ: C4.F5/C4×D5C2 ⊆ Aut C6240C6:2(C4.F5)480,1061

Non-split extensions G=N.Q with N=C6 and Q=C4.F5
extensionφ:Q→Aut NdρLabelID
C6.1(C4.F5) = C30.M4(2)φ: C4.F5/C5⋊C8C2 ⊆ Aut C6480C6.1(C4.F5)480,245
C6.2(C4.F5) = D30⋊C8φ: C4.F5/C5⋊C8C2 ⊆ Aut C6240C6.2(C4.F5)480,247
C6.3(C4.F5) = C30.4M4(2)φ: C4.F5/C5⋊C8C2 ⊆ Aut C6480C6.3(C4.F5)480,252
C6.4(C4.F5) = C60⋊C8φ: C4.F5/C4×D5C2 ⊆ Aut C6480C6.4(C4.F5)480,306
C6.5(C4.F5) = C30.11C42φ: C4.F5/C4×D5C2 ⊆ Aut C6480C6.5(C4.F5)480,307
C6.6(C4.F5) = C30.7M4(2)φ: C4.F5/C4×D5C2 ⊆ Aut C6240C6.6(C4.F5)480,308
C6.7(C4.F5) = C3×C20⋊C8central extension (φ=1)480C6.7(C4.F5)480,281
C6.8(C4.F5) = C3×C10.C42central extension (φ=1)480C6.8(C4.F5)480,282
C6.9(C4.F5) = C3×D10⋊C8central extension (φ=1)240C6.9(C4.F5)480,283

׿
×
𝔽