Extensions 1→N→G→Q→1 with N=C4○D20 and Q=S3

Direct product G=N×Q with N=C4○D20 and Q=S3
dρLabelID
S3×C4○D201204S3xC4oD20480,1091

Semidirect products G=N:Q with N=C4○D20 and Q=S3
extensionφ:Q→Out NdρLabelID
C4○D201S3 = D20.31D6φ: S3/C3C2 ⊆ Out C4○D202404C4oD20:1S3480,387
C4○D202S3 = D20.34D6φ: S3/C3C2 ⊆ Out C4○D202404C4oD20:2S3480,373
C4○D203S3 = D2021D6φ: S3/C3C2 ⊆ Out C4○D201204C4oD20:3S3480,375
C4○D204S3 = D2019D6φ: S3/C3C2 ⊆ Out C4○D201204+C4oD20:4S3480,377
C4○D205S3 = D20.38D6φ: S3/C3C2 ⊆ Out C4○D202404C4oD20:5S3480,1076
C4○D206S3 = D20.39D6φ: S3/C3C2 ⊆ Out C4○D202404-C4oD20:6S3480,1077
C4○D207S3 = D2024D6φ: S3/C3C2 ⊆ Out C4○D201204C4oD20:7S3480,1092
C4○D208S3 = D2026D6φ: S3/C3C2 ⊆ Out C4○D201204C4oD20:8S3480,1094
C4○D209S3 = D2029D6φ: S3/C3C2 ⊆ Out C4○D201204+C4oD20:9S3480,1095

Non-split extensions G=N.Q with N=C4○D20 and Q=S3
extensionφ:Q→Out NdρLabelID
C4○D20.1S3 = C60.97D4φ: S3/C3C2 ⊆ Out C4○D201204C4oD20.1S3480,53
C4○D20.2S3 = C60.96D4φ: S3/C3C2 ⊆ Out C4○D201204C4oD20.2S3480,52
C4○D20.3S3 = D20.2Dic3φ: S3/C3C2 ⊆ Out C4○D202404C4oD20.3S3480,360
C4○D20.4S3 = D20.37D6φ: S3/C3C2 ⊆ Out C4○D202404C4oD20.4S3480,383
C4○D20.5S3 = C60.63D4φ: S3/C3C2 ⊆ Out C4○D202404-C4oD20.5S3480,389
C4○D20.6S3 = D20.3Dic3φ: trivial image2404C4oD20.6S3480,359

׿
×
𝔽