Direct product G=NxQ with N=C40 and Q=C12
Semidirect products G=N:Q with N=C40 and Q=C12
extension | φ:Q→Aut N | d | ρ | Label | ID |
C40:1C12 = C3xD5.D8 | φ: C12/C3 → C4 ⊆ Aut C40 | 120 | 4 | C40:1C12 | 480,274 |
C40:2C12 = C3xC40:C4 | φ: C12/C3 → C4 ⊆ Aut C40 | 120 | 4 | C40:2C12 | 480,273 |
C40:3C12 = F5xC24 | φ: C12/C3 → C4 ⊆ Aut C40 | 120 | 4 | C40:3C12 | 480,271 |
C40:4C12 = C3xC8:F5 | φ: C12/C3 → C4 ⊆ Aut C40 | 120 | 4 | C40:4C12 | 480,272 |
C40:5C12 = C3xC40:5C4 | φ: C12/C6 → C2 ⊆ Aut C40 | 480 | | C40:5C12 | 480,96 |
C40:6C12 = C3xC40:6C4 | φ: C12/C6 → C2 ⊆ Aut C40 | 480 | | C40:6C12 | 480,95 |
C40:7C12 = Dic5xC24 | φ: C12/C6 → C2 ⊆ Aut C40 | 480 | | C40:7C12 | 480,91 |
C40:8C12 = C3xC40:8C4 | φ: C12/C6 → C2 ⊆ Aut C40 | 480 | | C40:8C12 | 480,93 |
C40:9C12 = C15xC2.D8 | φ: C12/C6 → C2 ⊆ Aut C40 | 480 | | C40:9C12 | 480,210 |
C40:10C12 = C15xC4.Q8 | φ: C12/C6 → C2 ⊆ Aut C40 | 480 | | C40:10C12 | 480,209 |
C40:11C12 = C15xC8:C4 | φ: C12/C6 → C2 ⊆ Aut C40 | 480 | | C40:11C12 | 480,200 |
Non-split extensions G=N.Q with N=C40 and Q=C12
extension | φ:Q→Aut N | d | ρ | Label | ID |
C40.1C12 = C3xD10.Q8 | φ: C12/C3 → C4 ⊆ Aut C40 | 240 | 4 | C40.1C12 | 480,276 |
C40.2C12 = C3xC40.C4 | φ: C12/C3 → C4 ⊆ Aut C40 | 240 | 4 | C40.2C12 | 480,275 |
C40.3C12 = C3xC5:C32 | φ: C12/C3 → C4 ⊆ Aut C40 | 480 | 4 | C40.3C12 | 480,5 |
C40.4C12 = C3xD5:C16 | φ: C12/C3 → C4 ⊆ Aut C40 | 240 | 4 | C40.4C12 | 480,269 |
C40.5C12 = C3xC8.F5 | φ: C12/C3 → C4 ⊆ Aut C40 | 240 | 4 | C40.5C12 | 480,270 |
C40.6C12 = C3xC40.6C4 | φ: C12/C6 → C2 ⊆ Aut C40 | 240 | 2 | C40.6C12 | 480,97 |
C40.7C12 = C3xC5:2C32 | φ: C12/C6 → C2 ⊆ Aut C40 | 480 | 2 | C40.7C12 | 480,2 |
C40.8C12 = C6xC5:2C16 | φ: C12/C6 → C2 ⊆ Aut C40 | 480 | | C40.8C12 | 480,89 |
C40.9C12 = C3xC20.4C8 | φ: C12/C6 → C2 ⊆ Aut C40 | 240 | 2 | C40.9C12 | 480,90 |
C40.10C12 = C15xC8.C4 | φ: C12/C6 → C2 ⊆ Aut C40 | 240 | 2 | C40.10C12 | 480,211 |
C40.11C12 = C15xM5(2) | φ: C12/C6 → C2 ⊆ Aut C40 | 240 | 2 | C40.11C12 | 480,213 |
x
:
Z
F
o
wr
Q
<