Extensions 1→N→G→Q→1 with N=C153C16 and Q=C2

Direct product G=N×Q with N=C153C16 and Q=C2
dρLabelID
C2×C153C16480C2xC15:3C16480,171

Semidirect products G=N:Q with N=C153C16 and Q=C2
extensionφ:Q→Out NdρLabelID
C153C161C2 = C157D16φ: C2/C1C2 ⊆ Out C153C162404+C15:3C16:1C2480,186
C153C162C2 = D8.D15φ: C2/C1C2 ⊆ Out C153C162404-C15:3C16:2C2480,187
C153C163C2 = C8.6D30φ: C2/C1C2 ⊆ Out C153C162404+C15:3C16:3C2480,188
C153C164C2 = C15⋊D16φ: C2/C1C2 ⊆ Out C153C162404C15:3C16:4C2480,13
C153C165C2 = C40.D6φ: C2/C1C2 ⊆ Out C153C162404C15:3C16:5C2480,16
C153C166C2 = C15⋊SD32φ: C2/C1C2 ⊆ Out C153C162404C15:3C16:6C2480,17
C153C167C2 = C80⋊S3φ: C2/C1C2 ⊆ Out C153C162402C15:3C16:7C2480,158
C153C168C2 = C60.7C8φ: C2/C1C2 ⊆ Out C153C162402C15:3C16:8C2480,172
C153C169C2 = D5×C3⋊C16φ: C2/C1C2 ⊆ Out C153C162404C15:3C16:9C2480,7
C153C1610C2 = S3×C52C16φ: C2/C1C2 ⊆ Out C153C162404C15:3C16:10C2480,8
C153C1611C2 = C40.51D6φ: C2/C1C2 ⊆ Out C153C162404C15:3C16:11C2480,10
C153C1612C2 = C40.52D6φ: C2/C1C2 ⊆ Out C153C162404C15:3C16:12C2480,11
C153C1613C2 = C16×D15φ: trivial image2402C15:3C16:13C2480,157

Non-split extensions G=N.Q with N=C153C16 and Q=C2
extensionφ:Q→Out NdρLabelID
C153C16.1C2 = C157Q32φ: C2/C1C2 ⊆ Out C153C164804-C15:3C16.1C2480,189
C153C16.2C2 = C15⋊Q32φ: C2/C1C2 ⊆ Out C153C164804C15:3C16.2C2480,22

׿
×
𝔽