Extensions 1→N→G→Q→1 with N=C5×GL2(𝔽3) and Q=C2

Direct product G=N×Q with N=C5×GL2(𝔽3) and Q=C2
dρLabelID
C10×GL2(𝔽3)80C10xGL(2,3)480,1017

Semidirect products G=N:Q with N=C5×GL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×GL2(𝔽3))⋊1C2 = GL2(𝔽3)⋊D5φ: C2/C1C2 ⊆ Out C5×GL2(𝔽3)804+(C5xGL(2,3)):1C2480,970
(C5×GL2(𝔽3))⋊2C2 = D10.1S4φ: C2/C1C2 ⊆ Out C5×GL2(𝔽3)804-(C5xGL(2,3)):2C2480,972
(C5×GL2(𝔽3))⋊3C2 = Dic5.6S4φ: C2/C1C2 ⊆ Out C5×GL2(𝔽3)804(C5xGL(2,3)):3C2480,968
(C5×GL2(𝔽3))⋊4C2 = D5×GL2(𝔽3)φ: C2/C1C2 ⊆ Out C5×GL2(𝔽3)404(C5xGL(2,3)):4C2480,974
(C5×GL2(𝔽3))⋊5C2 = C5×Q8.D6φ: C2/C1C2 ⊆ Out C5×GL2(𝔽3)804(C5xGL(2,3)):5C2480,1018
(C5×GL2(𝔽3))⋊6C2 = C5×C4.3S4φ: C2/C1C2 ⊆ Out C5×GL2(𝔽3)804(C5xGL(2,3)):6C2480,1021
(C5×GL2(𝔽3))⋊7C2 = C5×C4.6S4φ: trivial image802(C5xGL(2,3)):7C2480,1020


׿
×
𝔽