Extensions 1→N→G→Q→1 with N=C4 and Q=D5×A4

Direct product G=N×Q with N=C4 and Q=D5×A4
dρLabelID
C4×D5×A4606C4xD5xA4480,1036

Semidirect products G=N:Q with N=C4 and Q=D5×A4
extensionφ:Q→Aut NdρLabelID
C4⋊(D5×A4) = A4×D20φ: D5×A4/C5×A4C2 ⊆ Aut C4606+C4:(D5xA4)480,1037

Non-split extensions G=N.Q with N=C4 and Q=D5×A4
extensionφ:Q→Aut NdρLabelID
C4.1(D5×A4) = A4×Dic10φ: D5×A4/C5×A4C2 ⊆ Aut C41206-C4.1(D5xA4)480,1035
C4.2(D5×A4) = Dic10.A4φ: D5×A4/C5×A4C2 ⊆ Aut C41204+C4.2(D5xA4)480,1041
C4.3(D5×A4) = D20.A4φ: D5×A4/C5×A4C2 ⊆ Aut C4804-C4.3(D5xA4)480,1043
C4.4(D5×A4) = A4×C52C8central extension (φ=1)1206C4.4(D5xA4)480,265
C4.5(D5×A4) = SL2(𝔽3).Dic5central extension (φ=1)1604C4.5(D5xA4)480,267
C4.6(D5×A4) = D5×C4.A4central extension (φ=1)804C4.6(D5xA4)480,1042

׿
×
𝔽