Extensions 1→N→G→Q→1 with N=D4:2D5 and Q=S3

Direct product G=NxQ with N=D4:2D5 and Q=S3
dρLabelID
S3xD4:2D51208-S3xD4:2D5480,1099

Semidirect products G=N:Q with N=D4:2D5 and Q=S3
extensionφ:Q→Out NdρLabelID
D4:2D5:1S3 = Dic10:3D6φ: S3/C3C2 ⊆ Out D4:2D51208+D4:2D5:1S3480,554
D4:2D5:2S3 = D12.24D10φ: S3/C3C2 ⊆ Out D4:2D52408-D4:2D5:2S3480,566
D4:2D5:3S3 = C60.16C23φ: S3/C3C2 ⊆ Out D4:2D52408+D4:2D5:3S3480,568
D4:2D5:4S3 = C15:2- 1+4φ: S3/C3C2 ⊆ Out D4:2D52408-D4:2D5:4S3480,1096
D4:2D5:5S3 = D12:14D10φ: S3/C3C2 ⊆ Out D4:2D51208+D4:2D5:5S3480,1103
D4:2D5:6S3 = D30.C23φ: trivial image1208+D4:2D5:6S3480,1100

Non-split extensions G=N.Q with N=D4:2D5 and Q=S3
extensionφ:Q→Out NdρLabelID
D4:2D5.1S3 = C60.8C23φ: S3/C3C2 ⊆ Out D4:2D52408-D4:2D5.1S3480,560
D4:2D5.2S3 = Dic10:Dic3φ: S3/C3C2 ⊆ Out D4:2D51208D4:2D5.2S3480,313
D4:2D5.3S3 = Dic10.Dic3φ: S3/C3C2 ⊆ Out D4:2D52408D4:2D5.3S3480,1066

׿
x
:
Z
F
o
wr
Q
<