Extensions 1→N→G→Q→1 with N=Dic3.D10 and Q=C2

Direct product G=N×Q with N=Dic3.D10 and Q=C2
dρLabelID
C2×Dic3.D10240C2xDic3.D10480,1116

Semidirect products G=N:Q with N=Dic3.D10 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3.D101C2 = C30.C24φ: C2/C1C2 ⊆ Out Dic3.D102404Dic3.D10:1C2480,1080
Dic3.D102C2 = C15⋊2- 1+4φ: C2/C1C2 ⊆ Out Dic3.D102408-Dic3.D10:2C2480,1096
Dic3.D103C2 = S3×D42D5φ: C2/C1C2 ⊆ Out Dic3.D101208-Dic3.D10:3C2480,1099
Dic3.D104C2 = D30.C23φ: C2/C1C2 ⊆ Out Dic3.D101208+Dic3.D10:4C2480,1100
Dic3.D105C2 = D1214D10φ: C2/C1C2 ⊆ Out Dic3.D101208+Dic3.D10:5C2480,1103
Dic3.D106C2 = C15⋊2+ 1+4φ: C2/C1C2 ⊆ Out Dic3.D101204Dic3.D10:6C2480,1125
Dic3.D107C2 = D5×C4○D12φ: trivial image1204Dic3.D10:7C2480,1090

Non-split extensions G=N.Q with N=Dic3.D10 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3.D10.1C2 = C5⋊C8.D6φ: C2/C1C2 ⊆ Out Dic3.D102408Dic3.D10.1C2480,1003
Dic3.D10.2C2 = D15⋊C8⋊C2φ: C2/C1C2 ⊆ Out Dic3.D102408Dic3.D10.2C2480,1005

׿
×
𝔽