Extensions 1→N→G→Q→1 with N=C2xC3:D4 and Q=D5

Direct product G=NxQ with N=C2xC3:D4 and Q=D5
dρLabelID
C2xD5xC3:D4120C2xD5xC3:D4480,1122

Semidirect products G=N:Q with N=C2xC3:D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2xC3:D4):1D5 = (C6xD5):D4φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):1D5480,625
(C2xC3:D4):2D5 = D30:7D4φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):2D5480,633
(C2xC3:D4):3D5 = Dic15:4D4φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):3D5480,634
(C2xC3:D4):4D5 = (C2xC30):D4φ: D5/C5C2 ⊆ Out C2xC3:D4120(C2xC3:D4):4D5480,639
(C2xC3:D4):5D5 = (S3xC10):D4φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):5D5480,641
(C2xC3:D4):6D5 = (C2xC10):4D12φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):6D5480,642
(C2xC3:D4):7D5 = Dic15:5D4φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):7D5480,643
(C2xC3:D4):8D5 = Dic15:18D4φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):8D5480,647
(C2xC3:D4):9D5 = D30:19D4φ: D5/C5C2 ⊆ Out C2xC3:D4120(C2xC3:D4):9D5480,649
(C2xC3:D4):10D5 = D30:8D4φ: D5/C5C2 ⊆ Out C2xC3:D4120(C2xC3:D4):10D5480,653
(C2xC3:D4):11D5 = C2xC30.C23φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):11D5480,1114
(C2xC3:D4):12D5 = C2xD10:D6φ: D5/C5C2 ⊆ Out C2xC3:D4120(C2xC3:D4):12D5480,1124
(C2xC3:D4):13D5 = C15:2+ 1+4φ: D5/C5C2 ⊆ Out C2xC3:D41204(C2xC3:D4):13D5480,1125
(C2xC3:D4):14D5 = C2xDic3.D10φ: trivial image240(C2xC3:D4):14D5480,1116

Non-split extensions G=N.Q with N=C2xC3:D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2xC3:D4).1D5 = C15:8(C23:C4)φ: D5/C5C2 ⊆ Out C2xC3:D41204(C2xC3:D4).1D5480,72
(C2xC3:D4).2D5 = C23.D5:S3φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4).2D5480,601
(C2xC3:D4).3D5 = C30.(C2xD4)φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4).3D5480,615
(C2xC3:D4).4D5 = (C2xC10).D12φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4).4D5480,619
(C2xC3:D4).5D5 = (S3xC10).D4φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4).5D5480,631
(C2xC3:D4).6D5 = Dic15:17D4φ: D5/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4).6D5480,636
(C2xC3:D4).7D5 = Dic5xC3:D4φ: trivial image240(C2xC3:D4).7D5480,627

׿
x
:
Z
F
o
wr
Q
<