Extensions 1→N→G→Q→1 with N=C2xC3:D4 and Q=C10

Direct product G=NxQ with N=C2xC3:D4 and Q=C10
dρLabelID
C2xC10xC3:D4240C2xC10xC3:D4480,1164

Semidirect products G=N:Q with N=C2xC3:D4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xC3:D4):1C10 = C5xD6:D4φ: C10/C5C2 ⊆ Out C2xC3:D4120(C2xC3:D4):1C10480,761
(C2xC3:D4):2C10 = C5xDic3:D4φ: C10/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):2C10480,763
(C2xC3:D4):3C10 = C5xC12:7D4φ: C10/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):3C10480,809
(C2xC3:D4):4C10 = C5xC23:2D6φ: C10/C5C2 ⊆ Out C2xC3:D4120(C2xC3:D4):4C10480,816
(C2xC3:D4):5C10 = C5xD6:3D4φ: C10/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):5C10480,817
(C2xC3:D4):6C10 = C5xC23.14D6φ: C10/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):6C10480,818
(C2xC3:D4):7C10 = C5xC12:3D4φ: C10/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):7C10480,819
(C2xC3:D4):8C10 = C5xC24:4S3φ: C10/C5C2 ⊆ Out C2xC3:D4120(C2xC3:D4):8C10480,832
(C2xC3:D4):9C10 = S3xD4xC10φ: C10/C5C2 ⊆ Out C2xC3:D4120(C2xC3:D4):9C10480,1154
(C2xC3:D4):10C10 = C10xD4:2S3φ: C10/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4):10C10480,1155
(C2xC3:D4):11C10 = C5xD4:6D6φ: C10/C5C2 ⊆ Out C2xC3:D41204(C2xC3:D4):11C10480,1156
(C2xC3:D4):12C10 = C10xC4oD12φ: trivial image240(C2xC3:D4):12C10480,1153

Non-split extensions G=N.Q with N=C2xC3:D4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xC3:D4).1C10 = C5xC23.6D6φ: C10/C5C2 ⊆ Out C2xC3:D41204(C2xC3:D4).1C10480,125
(C2xC3:D4).2C10 = C5xDic3:4D4φ: C10/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4).2C10480,760
(C2xC3:D4).3C10 = C5xC23.9D6φ: C10/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4).3C10480,762
(C2xC3:D4).4C10 = C5xC23.11D6φ: C10/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4).4C10480,764
(C2xC3:D4).5C10 = C5xC23.21D6φ: C10/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4).5C10480,765
(C2xC3:D4).6C10 = C5xC23.28D6φ: C10/C5C2 ⊆ Out C2xC3:D4240(C2xC3:D4).6C10480,808
(C2xC3:D4).7C10 = C20xC3:D4φ: trivial image240(C2xC3:D4).7C10480,807

׿
x
:
Z
F
o
wr
Q
<