Extensions 1→N→G→Q→1 with N=C3xD4:D5 and Q=C2

Direct product G=NxQ with N=C3xD4:D5 and Q=C2
dρLabelID
C6xD4:D5240C6xD4:D5480,724

Semidirect products G=N:Q with N=C3xD4:D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD4:D5):1C2 = S3xD4:D5φ: C2/C1C2 ⊆ Out C3xD4:D51208+(C3xD4:D5):1C2480,555
(C3xD4:D5):2C2 = D60.C22φ: C2/C1C2 ⊆ Out C3xD4:D51208+(C3xD4:D5):2C2480,556
(C3xD4:D5):3C2 = D15:D8φ: C2/C1C2 ⊆ Out C3xD4:D51208+(C3xD4:D5):3C2480,557
(C3xD4:D5):4C2 = D30.8D4φ: C2/C1C2 ⊆ Out C3xD4:D51208-(C3xD4:D5):4C2480,558
(C3xD4:D5):5C2 = D20.24D6φ: C2/C1C2 ⊆ Out C3xD4:D52408-(C3xD4:D5):5C2480,569
(C3xD4:D5):6C2 = D20:10D6φ: C2/C1C2 ⊆ Out C3xD4:D51208-(C3xD4:D5):6C2480,570
(C3xD4:D5):7C2 = D20.10D6φ: C2/C1C2 ⊆ Out C3xD4:D52408-(C3xD4:D5):7C2480,573
(C3xD4:D5):8C2 = Dic6:D10φ: C2/C1C2 ⊆ Out C3xD4:D51208+(C3xD4:D5):8C2480,574
(C3xD4:D5):9C2 = C3xD5xD8φ: C2/C1C2 ⊆ Out C3xD4:D51204(C3xD4:D5):9C2480,703
(C3xD4:D5):10C2 = C3xD8:D5φ: C2/C1C2 ⊆ Out C3xD4:D51204(C3xD4:D5):10C2480,704
(C3xD4:D5):11C2 = C3xD40:C2φ: C2/C1C2 ⊆ Out C3xD4:D51204(C3xD4:D5):11C2480,707
(C3xD4:D5):12C2 = C3xSD16:3D5φ: C2/C1C2 ⊆ Out C3xD4:D52404(C3xD4:D5):12C2480,709
(C3xD4:D5):13C2 = C3xD4.D10φ: C2/C1C2 ⊆ Out C3xD4:D51204(C3xD4:D5):13C2480,725
(C3xD4:D5):14C2 = C3xD4:D10φ: C2/C1C2 ⊆ Out C3xD4:D51204(C3xD4:D5):14C2480,742
(C3xD4:D5):15C2 = C3xD4.8D10φ: trivial image2404(C3xD4:D5):15C2480,743


׿
x
:
Z
F
o
wr
Q
<