Extensions 1→N→G→Q→1 with N=C3xD4.D5 and Q=C2

Direct product G=NxQ with N=C3xD4.D5 and Q=C2
dρLabelID
C6xD4.D5240C6xD4.D5480,726

Semidirect products G=N:Q with N=C3xD4.D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD4.D5):1C2 = S3xD4.D5φ: C2/C1C2 ⊆ Out C3xD4.D51208-(C3xD4.D5):1C2480,561
(C3xD4.D5):2C2 = C60.10C23φ: C2/C1C2 ⊆ Out C3xD4.D52408-(C3xD4.D5):2C2480,562
(C3xD4.D5):3C2 = Dic10:D6φ: C2/C1C2 ⊆ Out C3xD4.D51208+(C3xD4.D5):3C2480,563
(C3xD4.D5):4C2 = D30.9D4φ: C2/C1C2 ⊆ Out C3xD4.D52408-(C3xD4.D5):4C2480,564
(C3xD4.D5):5C2 = C60.19C23φ: C2/C1C2 ⊆ Out C3xD4.D52408+(C3xD4.D5):5C2480,571
(C3xD4.D5):6C2 = D12.9D10φ: C2/C1C2 ⊆ Out C3xD4.D51208+(C3xD4.D5):6C2480,572
(C3xD4.D5):7C2 = D30.11D4φ: C2/C1C2 ⊆ Out C3xD4.D52408-(C3xD4.D5):7C2480,575
(C3xD4.D5):8C2 = D12:5D10φ: C2/C1C2 ⊆ Out C3xD4.D51208+(C3xD4.D5):8C2480,576
(C3xD4.D5):9C2 = C3xD8:D5φ: C2/C1C2 ⊆ Out C3xD4.D51204(C3xD4.D5):9C2480,704
(C3xD4.D5):10C2 = C3xD8:3D5φ: C2/C1C2 ⊆ Out C3xD4.D52404(C3xD4.D5):10C2480,705
(C3xD4.D5):11C2 = C3xD5xSD16φ: C2/C1C2 ⊆ Out C3xD4.D51204(C3xD4.D5):11C2480,706
(C3xD4.D5):12C2 = C3xSD16:D5φ: C2/C1C2 ⊆ Out C3xD4.D52404(C3xD4.D5):12C2480,708
(C3xD4.D5):13C2 = C3xD4.D10φ: C2/C1C2 ⊆ Out C3xD4.D51204(C3xD4.D5):13C2480,725
(C3xD4.D5):14C2 = C3xD4.9D10φ: C2/C1C2 ⊆ Out C3xD4.D52404(C3xD4.D5):14C2480,744
(C3xD4.D5):15C2 = C3xD4.8D10φ: trivial image2404(C3xD4.D5):15C2480,743


׿
x
:
Z
F
o
wr
Q
<