Extensions 1→N→G→Q→1 with N=Q8xC10 and Q=S3

Direct product G=NxQ with N=Q8xC10 and Q=S3
dρLabelID
S3xQ8xC10240S3xQ8xC10480,1157

Semidirect products G=N:Q with N=Q8xC10 and Q=S3
extensionφ:Q→Out NdρLabelID
(Q8xC10):1S3 = C2xQ8:D15φ: S3/C1S3 ⊆ Out Q8xC1080(Q8xC10):1S3480,1028
(Q8xC10):2S3 = Q8.D30φ: S3/C1S3 ⊆ Out Q8xC10804(Q8xC10):2S3480,1029
(Q8xC10):3S3 = C10xGL2(F3)φ: S3/C1S3 ⊆ Out Q8xC1080(Q8xC10):3S3480,1017
(Q8xC10):4S3 = C5xQ8.D6φ: S3/C1S3 ⊆ Out Q8xC10804(Q8xC10):4S3480,1018
(Q8xC10):5S3 = C2xQ8:2D15φ: S3/C3C2 ⊆ Out Q8xC10240(Q8xC10):5S3480,906
(Q8xC10):6S3 = Q8.11D30φ: S3/C3C2 ⊆ Out Q8xC102404(Q8xC10):6S3480,907
(Q8xC10):7S3 = D30:7Q8φ: S3/C3C2 ⊆ Out Q8xC10240(Q8xC10):7S3480,911
(Q8xC10):8S3 = C60.23D4φ: S3/C3C2 ⊆ Out Q8xC10240(Q8xC10):8S3480,912
(Q8xC10):9S3 = C2xQ8xD15φ: S3/C3C2 ⊆ Out Q8xC10240(Q8xC10):9S3480,1172
(Q8xC10):10S3 = C2xQ8:3D15φ: S3/C3C2 ⊆ Out Q8xC10240(Q8xC10):10S3480,1173
(Q8xC10):11S3 = Q8.15D30φ: S3/C3C2 ⊆ Out Q8xC102404(Q8xC10):11S3480,1174
(Q8xC10):12S3 = C10xQ8:2S3φ: S3/C3C2 ⊆ Out Q8xC10240(Q8xC10):12S3480,820
(Q8xC10):13S3 = C5xQ8.11D6φ: S3/C3C2 ⊆ Out Q8xC102404(Q8xC10):13S3480,821
(Q8xC10):14S3 = C5xD6:3Q8φ: S3/C3C2 ⊆ Out Q8xC10240(Q8xC10):14S3480,825
(Q8xC10):15S3 = C5xC12.23D4φ: S3/C3C2 ⊆ Out Q8xC10240(Q8xC10):15S3480,826
(Q8xC10):16S3 = C5xQ8.15D6φ: S3/C3C2 ⊆ Out Q8xC102404(Q8xC10):16S3480,1159
(Q8xC10):17S3 = C10xQ8:3S3φ: trivial image240(Q8xC10):17S3480,1158

Non-split extensions G=N.Q with N=Q8xC10 and Q=S3
extensionφ:Q→Out NdρLabelID
(Q8xC10).1S3 = Q8:Dic15φ: S3/C1S3 ⊆ Out Q8xC10160(Q8xC10).1S3480,260
(Q8xC10).2S3 = C2xQ8.D15φ: S3/C1S3 ⊆ Out Q8xC10160(Q8xC10).2S3480,1027
(Q8xC10).3S3 = C5xQ8:Dic3φ: S3/C1S3 ⊆ Out Q8xC10160(Q8xC10).3S3480,256
(Q8xC10).4S3 = C10xCSU2(F3)φ: S3/C1S3 ⊆ Out Q8xC10160(Q8xC10).4S3480,1016
(Q8xC10).5S3 = Q8:2Dic15φ: S3/C3C2 ⊆ Out Q8xC10480(Q8xC10).5S3480,195
(Q8xC10).6S3 = C60.10D4φ: S3/C3C2 ⊆ Out Q8xC102404(Q8xC10).6S3480,196
(Q8xC10).7S3 = C2xC15:7Q16φ: S3/C3C2 ⊆ Out Q8xC10480(Q8xC10).7S3480,908
(Q8xC10).8S3 = Dic15:4Q8φ: S3/C3C2 ⊆ Out Q8xC10480(Q8xC10).8S3480,909
(Q8xC10).9S3 = Q8xDic15φ: S3/C3C2 ⊆ Out Q8xC10480(Q8xC10).9S3480,910
(Q8xC10).10S3 = C5xQ8:2Dic3φ: S3/C3C2 ⊆ Out Q8xC10480(Q8xC10).10S3480,154
(Q8xC10).11S3 = C5xC12.10D4φ: S3/C3C2 ⊆ Out Q8xC102404(Q8xC10).11S3480,155
(Q8xC10).12S3 = C10xC3:Q16φ: S3/C3C2 ⊆ Out Q8xC10480(Q8xC10).12S3480,822
(Q8xC10).13S3 = C5xDic3:Q8φ: S3/C3C2 ⊆ Out Q8xC10480(Q8xC10).13S3480,823
(Q8xC10).14S3 = C5xQ8xDic3φ: trivial image480(Q8xC10).14S3480,824

׿
x
:
Z
F
o
wr
Q
<