Extensions 1→N→G→Q→1 with N=S3×C8 and Q=D5

Direct product G=N×Q with N=S3×C8 and Q=D5
dρLabelID
S3×C8×D51204S3xC8xD5480,319

Semidirect products G=N:Q with N=S3×C8 and Q=D5
extensionφ:Q→Out NdρLabelID
(S3×C8)⋊1D5 = S3×D40φ: D5/C5C2 ⊆ Out S3×C81204+(S3xC8):1D5480,328
(S3×C8)⋊2D5 = D407S3φ: D5/C5C2 ⊆ Out S3×C82404-(S3xC8):2D5480,349
(S3×C8)⋊3D5 = D1205C2φ: D5/C5C2 ⊆ Out S3×C82404+(S3xC8):3D5480,351
(S3×C8)⋊4D5 = S3×C40⋊C2φ: D5/C5C2 ⊆ Out S3×C81204(S3xC8):4D5480,327
(S3×C8)⋊5D5 = D6.1D20φ: D5/C5C2 ⊆ Out S3×C82404(S3xC8):5D5480,348
(S3×C8)⋊6D5 = C40.54D6φ: D5/C5C2 ⊆ Out S3×C82404(S3xC8):6D5480,341
(S3×C8)⋊7D5 = S3×C8⋊D5φ: D5/C5C2 ⊆ Out S3×C81204(S3xC8):7D5480,321
(S3×C8)⋊8D5 = C40.55D6φ: D5/C5C2 ⊆ Out S3×C82404(S3xC8):8D5480,343

Non-split extensions G=N.Q with N=S3×C8 and Q=D5
extensionφ:Q→Out NdρLabelID
(S3×C8).1D5 = S3×Dic20φ: D5/C5C2 ⊆ Out S3×C82404-(S3xC8).1D5480,338
(S3×C8).2D5 = C40.52D6φ: D5/C5C2 ⊆ Out S3×C82404(S3xC8).2D5480,11
(S3×C8).3D5 = S3×C52C16φ: trivial image2404(S3xC8).3D5480,8

׿
×
𝔽