Extensions 1→N→G→Q→1 with N=C2xC4 and Q=Dic15

Direct product G=NxQ with N=C2xC4 and Q=Dic15
dρLabelID
C2xC4xDic15480C2xC4xDic15480,887

Semidirect products G=N:Q with N=C2xC4 and Q=Dic15
extensionφ:Q→Aut NdρLabelID
(C2xC4):Dic15 = C23.7D30φ: Dic15/C15C4 ⊆ Aut C2xC41204(C2xC4):Dic15480,194
(C2xC4):2Dic15 = C30.29C42φ: Dic15/C30C2 ⊆ Aut C2xC4480(C2xC4):2Dic15480,191
(C2xC4):3Dic15 = C2xC60:5C4φ: Dic15/C30C2 ⊆ Aut C2xC4480(C2xC4):3Dic15480,890
(C2xC4):4Dic15 = C23.26D30φ: Dic15/C30C2 ⊆ Aut C2xC4240(C2xC4):4Dic15480,891

Non-split extensions G=N.Q with N=C2xC4 and Q=Dic15
extensionφ:Q→Aut NdρLabelID
(C2xC4).Dic15 = C60.10D4φ: Dic15/C15C4 ⊆ Aut C2xC42404(C2xC4).Dic15480,196
(C2xC4).2Dic15 = C42.D15φ: Dic15/C30C2 ⊆ Aut C2xC4480(C2xC4).2Dic15480,163
(C2xC4).3Dic15 = C60:5C8φ: Dic15/C30C2 ⊆ Aut C2xC4480(C2xC4).3Dic15480,164
(C2xC4).4Dic15 = C60.212D4φ: Dic15/C30C2 ⊆ Aut C2xC4240(C2xC4).4Dic15480,190
(C2xC4).5Dic15 = C60.7C8φ: Dic15/C30C2 ⊆ Aut C2xC42402(C2xC4).5Dic15480,172
(C2xC4).6Dic15 = C2xC60.7C4φ: Dic15/C30C2 ⊆ Aut C2xC4240(C2xC4).6Dic15480,886
(C2xC4).7Dic15 = C4xC15:3C8central extension (φ=1)480(C2xC4).7Dic15480,162
(C2xC4).8Dic15 = C2xC15:3C16central extension (φ=1)480(C2xC4).8Dic15480,171
(C2xC4).9Dic15 = C22xC15:3C8central extension (φ=1)480(C2xC4).9Dic15480,885

׿
x
:
Z
F
o
wr
Q
<