extension | φ:Q→Out N | d | ρ | Label | ID |
(S3xC40):1C2 = S3xD40 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 120 | 4+ | (S3xC40):1C2 | 480,328 |
(S3xC40):2C2 = D40:7S3 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 240 | 4- | (S3xC40):2C2 | 480,349 |
(S3xC40):3C2 = D120:5C2 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 240 | 4+ | (S3xC40):3C2 | 480,351 |
(S3xC40):4C2 = S3xC40:C2 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 120 | 4 | (S3xC40):4C2 | 480,327 |
(S3xC40):5C2 = D6.1D20 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 240 | 4 | (S3xC40):5C2 | 480,348 |
(S3xC40):6C2 = S3xC8xD5 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 120 | 4 | (S3xC40):6C2 | 480,319 |
(S3xC40):7C2 = S3xC8:D5 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 120 | 4 | (S3xC40):7C2 | 480,321 |
(S3xC40):8C2 = C40.54D6 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 240 | 4 | (S3xC40):8C2 | 480,341 |
(S3xC40):9C2 = C40.55D6 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 240 | 4 | (S3xC40):9C2 | 480,343 |
(S3xC40):10C2 = C5xS3xD8 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 120 | 4 | (S3xC40):10C2 | 480,789 |
(S3xC40):11C2 = C5xD8:3S3 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 240 | 4 | (S3xC40):11C2 | 480,791 |
(S3xC40):12C2 = C5xD24:C2 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 240 | 4 | (S3xC40):12C2 | 480,798 |
(S3xC40):13C2 = C5xS3xSD16 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 120 | 4 | (S3xC40):13C2 | 480,792 |
(S3xC40):14C2 = C5xQ8.7D6 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 240 | 4 | (S3xC40):14C2 | 480,795 |
(S3xC40):15C2 = C5xC8oD12 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 240 | 2 | (S3xC40):15C2 | 480,780 |
(S3xC40):16C2 = C5xS3xM4(2) | φ: C2/C1 → C2 ⊆ Out S3xC40 | 120 | 4 | (S3xC40):16C2 | 480,785 |
(S3xC40):17C2 = C5xD12.C4 | φ: C2/C1 → C2 ⊆ Out S3xC40 | 240 | 4 | (S3xC40):17C2 | 480,786 |