Extensions 1→N→G→Q→1 with N=S3xC40 and Q=C2

Direct product G=NxQ with N=S3xC40 and Q=C2
dρLabelID
S3xC2xC40240S3xC2xC40480,778

Semidirect products G=N:Q with N=S3xC40 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC40):1C2 = S3xD40φ: C2/C1C2 ⊆ Out S3xC401204+(S3xC40):1C2480,328
(S3xC40):2C2 = D40:7S3φ: C2/C1C2 ⊆ Out S3xC402404-(S3xC40):2C2480,349
(S3xC40):3C2 = D120:5C2φ: C2/C1C2 ⊆ Out S3xC402404+(S3xC40):3C2480,351
(S3xC40):4C2 = S3xC40:C2φ: C2/C1C2 ⊆ Out S3xC401204(S3xC40):4C2480,327
(S3xC40):5C2 = D6.1D20φ: C2/C1C2 ⊆ Out S3xC402404(S3xC40):5C2480,348
(S3xC40):6C2 = S3xC8xD5φ: C2/C1C2 ⊆ Out S3xC401204(S3xC40):6C2480,319
(S3xC40):7C2 = S3xC8:D5φ: C2/C1C2 ⊆ Out S3xC401204(S3xC40):7C2480,321
(S3xC40):8C2 = C40.54D6φ: C2/C1C2 ⊆ Out S3xC402404(S3xC40):8C2480,341
(S3xC40):9C2 = C40.55D6φ: C2/C1C2 ⊆ Out S3xC402404(S3xC40):9C2480,343
(S3xC40):10C2 = C5xS3xD8φ: C2/C1C2 ⊆ Out S3xC401204(S3xC40):10C2480,789
(S3xC40):11C2 = C5xD8:3S3φ: C2/C1C2 ⊆ Out S3xC402404(S3xC40):11C2480,791
(S3xC40):12C2 = C5xD24:C2φ: C2/C1C2 ⊆ Out S3xC402404(S3xC40):12C2480,798
(S3xC40):13C2 = C5xS3xSD16φ: C2/C1C2 ⊆ Out S3xC401204(S3xC40):13C2480,792
(S3xC40):14C2 = C5xQ8.7D6φ: C2/C1C2 ⊆ Out S3xC402404(S3xC40):14C2480,795
(S3xC40):15C2 = C5xC8oD12φ: C2/C1C2 ⊆ Out S3xC402402(S3xC40):15C2480,780
(S3xC40):16C2 = C5xS3xM4(2)φ: C2/C1C2 ⊆ Out S3xC401204(S3xC40):16C2480,785
(S3xC40):17C2 = C5xD12.C4φ: C2/C1C2 ⊆ Out S3xC402404(S3xC40):17C2480,786

Non-split extensions G=N.Q with N=S3xC40 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC40).1C2 = S3xDic20φ: C2/C1C2 ⊆ Out S3xC402404-(S3xC40).1C2480,338
(S3xC40).2C2 = S3xC5:2C16φ: C2/C1C2 ⊆ Out S3xC402404(S3xC40).2C2480,8
(S3xC40).3C2 = C40.52D6φ: C2/C1C2 ⊆ Out S3xC402404(S3xC40).3C2480,11
(S3xC40).4C2 = C5xS3xQ16φ: C2/C1C2 ⊆ Out S3xC402404(S3xC40).4C2480,796
(S3xC40).5C2 = C5xD6.C8φ: C2/C1C2 ⊆ Out S3xC402402(S3xC40).5C2480,117
(S3xC40).6C2 = S3xC80φ: trivial image2402(S3xC40).6C2480,116

׿
x
:
Z
F
o
wr
Q
<