Extensions 1→N→G→Q→1 with N=S3×C40 and Q=C2

Direct product G=N×Q with N=S3×C40 and Q=C2
dρLabelID
S3×C2×C40240S3xC2xC40480,778

Semidirect products G=N:Q with N=S3×C40 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C40)⋊1C2 = S3×D40φ: C2/C1C2 ⊆ Out S3×C401204+(S3xC40):1C2480,328
(S3×C40)⋊2C2 = D407S3φ: C2/C1C2 ⊆ Out S3×C402404-(S3xC40):2C2480,349
(S3×C40)⋊3C2 = D1205C2φ: C2/C1C2 ⊆ Out S3×C402404+(S3xC40):3C2480,351
(S3×C40)⋊4C2 = S3×C40⋊C2φ: C2/C1C2 ⊆ Out S3×C401204(S3xC40):4C2480,327
(S3×C40)⋊5C2 = D6.1D20φ: C2/C1C2 ⊆ Out S3×C402404(S3xC40):5C2480,348
(S3×C40)⋊6C2 = S3×C8×D5φ: C2/C1C2 ⊆ Out S3×C401204(S3xC40):6C2480,319
(S3×C40)⋊7C2 = S3×C8⋊D5φ: C2/C1C2 ⊆ Out S3×C401204(S3xC40):7C2480,321
(S3×C40)⋊8C2 = C40.54D6φ: C2/C1C2 ⊆ Out S3×C402404(S3xC40):8C2480,341
(S3×C40)⋊9C2 = C40.55D6φ: C2/C1C2 ⊆ Out S3×C402404(S3xC40):9C2480,343
(S3×C40)⋊10C2 = C5×S3×D8φ: C2/C1C2 ⊆ Out S3×C401204(S3xC40):10C2480,789
(S3×C40)⋊11C2 = C5×D83S3φ: C2/C1C2 ⊆ Out S3×C402404(S3xC40):11C2480,791
(S3×C40)⋊12C2 = C5×D24⋊C2φ: C2/C1C2 ⊆ Out S3×C402404(S3xC40):12C2480,798
(S3×C40)⋊13C2 = C5×S3×SD16φ: C2/C1C2 ⊆ Out S3×C401204(S3xC40):13C2480,792
(S3×C40)⋊14C2 = C5×Q8.7D6φ: C2/C1C2 ⊆ Out S3×C402404(S3xC40):14C2480,795
(S3×C40)⋊15C2 = C5×C8○D12φ: C2/C1C2 ⊆ Out S3×C402402(S3xC40):15C2480,780
(S3×C40)⋊16C2 = C5×S3×M4(2)φ: C2/C1C2 ⊆ Out S3×C401204(S3xC40):16C2480,785
(S3×C40)⋊17C2 = C5×D12.C4φ: C2/C1C2 ⊆ Out S3×C402404(S3xC40):17C2480,786

Non-split extensions G=N.Q with N=S3×C40 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C40).1C2 = S3×Dic20φ: C2/C1C2 ⊆ Out S3×C402404-(S3xC40).1C2480,338
(S3×C40).2C2 = S3×C52C16φ: C2/C1C2 ⊆ Out S3×C402404(S3xC40).2C2480,8
(S3×C40).3C2 = C40.52D6φ: C2/C1C2 ⊆ Out S3×C402404(S3xC40).3C2480,11
(S3×C40).4C2 = C5×S3×Q16φ: C2/C1C2 ⊆ Out S3×C402404(S3xC40).4C2480,796
(S3×C40).5C2 = C5×D6.C8φ: C2/C1C2 ⊆ Out S3×C402402(S3xC40).5C2480,117
(S3×C40).6C2 = S3×C80φ: trivial image2402(S3xC40).6C2480,116

׿
×
𝔽