Extensions 1→N→G→Q→1 with N=S3×C8 and Q=C10

Direct product G=N×Q with N=S3×C8 and Q=C10
dρLabelID
S3×C2×C40240S3xC2xC40480,778

Semidirect products G=N:Q with N=S3×C8 and Q=C10
extensionφ:Q→Out NdρLabelID
(S3×C8)⋊1C10 = C5×S3×D8φ: C10/C5C2 ⊆ Out S3×C81204(S3xC8):1C10480,789
(S3×C8)⋊2C10 = C5×D83S3φ: C10/C5C2 ⊆ Out S3×C82404(S3xC8):2C10480,791
(S3×C8)⋊3C10 = C5×D24⋊C2φ: C10/C5C2 ⊆ Out S3×C82404(S3xC8):3C10480,798
(S3×C8)⋊4C10 = C5×S3×SD16φ: C10/C5C2 ⊆ Out S3×C81204(S3xC8):4C10480,792
(S3×C8)⋊5C10 = C5×Q8.7D6φ: C10/C5C2 ⊆ Out S3×C82404(S3xC8):5C10480,795
(S3×C8)⋊6C10 = C5×C8○D12φ: C10/C5C2 ⊆ Out S3×C82402(S3xC8):6C10480,780
(S3×C8)⋊7C10 = C5×S3×M4(2)φ: C10/C5C2 ⊆ Out S3×C81204(S3xC8):7C10480,785
(S3×C8)⋊8C10 = C5×D12.C4φ: C10/C5C2 ⊆ Out S3×C82404(S3xC8):8C10480,786

Non-split extensions G=N.Q with N=S3×C8 and Q=C10
extensionφ:Q→Out NdρLabelID
(S3×C8).1C10 = C5×S3×Q16φ: C10/C5C2 ⊆ Out S3×C82404(S3xC8).1C10480,796
(S3×C8).2C10 = C5×D6.C8φ: C10/C5C2 ⊆ Out S3×C82402(S3xC8).2C10480,117
(S3×C8).3C10 = S3×C80φ: trivial image2402(S3xC8).3C10480,116

׿
×
𝔽