Extensions 1→N→G→Q→1 with N=C5xD4.S3 and Q=C2

Direct product G=NxQ with N=C5xD4.S3 and Q=C2
dρLabelID
C10xD4.S3240C10xD4.S3480,812

Semidirect products G=N:Q with N=C5xD4.S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xD4.S3):1C2 = D5xD4.S3φ: C2/C1C2 ⊆ Out C5xD4.S31208-(C5xD4.S3):1C2480,559
(C5xD4.S3):2C2 = C60.8C23φ: C2/C1C2 ⊆ Out C5xD4.S32408-(C5xD4.S3):2C2480,560
(C5xD4.S3):3C2 = Dic10:D6φ: C2/C1C2 ⊆ Out C5xD4.S31208+(C5xD4.S3):3C2480,563
(C5xD4.S3):4C2 = D30.9D4φ: C2/C1C2 ⊆ Out C5xD4.S32408-(C5xD4.S3):4C2480,564
(C5xD4.S3):5C2 = D20.9D6φ: C2/C1C2 ⊆ Out C5xD4.S31208+(C5xD4.S3):5C2480,567
(C5xD4.S3):6C2 = C60.16C23φ: C2/C1C2 ⊆ Out C5xD4.S32408+(C5xD4.S3):6C2480,568
(C5xD4.S3):7C2 = D20.10D6φ: C2/C1C2 ⊆ Out C5xD4.S32408-(C5xD4.S3):7C2480,573
(C5xD4.S3):8C2 = Dic6:D10φ: C2/C1C2 ⊆ Out C5xD4.S31208+(C5xD4.S3):8C2480,574
(C5xD4.S3):9C2 = C5xD8:S3φ: C2/C1C2 ⊆ Out C5xD4.S31204(C5xD4.S3):9C2480,790
(C5xD4.S3):10C2 = C5xD8:3S3φ: C2/C1C2 ⊆ Out C5xD4.S32404(C5xD4.S3):10C2480,791
(C5xD4.S3):11C2 = C5xS3xSD16φ: C2/C1C2 ⊆ Out C5xD4.S31204(C5xD4.S3):11C2480,792
(C5xD4.S3):12C2 = C5xD4.D6φ: C2/C1C2 ⊆ Out C5xD4.S32404(C5xD4.S3):12C2480,794
(C5xD4.S3):13C2 = C5xD12:6C22φ: C2/C1C2 ⊆ Out C5xD4.S31204(C5xD4.S3):13C2480,811
(C5xD4.S3):14C2 = C5xQ8.14D6φ: C2/C1C2 ⊆ Out C5xD4.S32404(C5xD4.S3):14C2480,830
(C5xD4.S3):15C2 = C5xQ8.13D6φ: trivial image2404(C5xD4.S3):15C2480,829


׿
x
:
Z
F
o
wr
Q
<