Extensions 1→N→G→Q→1 with N=C2xC6xDic5 and Q=C2

Direct product G=NxQ with N=C2xC6xDic5 and Q=C2
dρLabelID
Dic5xC22xC6480Dic5xC2^2xC6480,1148

Semidirect products G=N:Q with N=C2xC6xDic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC6xDic5):1C2 = C2xD6:Dic5φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):1C2480,614
(C2xC6xDic5):2C2 = C30.(C2xD4)φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):2C2480,615
(C2xC6xDic5):3C2 = C2xD30:4C4φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):3C2480,616
(C2xC6xDic5):4C2 = C6.D4:D5φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):4C2480,622
(C2xC6xDic5):5C2 = Dic5xC3:D4φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):5C2480,627
(C2xC6xDic5):6C2 = C15:26(C4xD4)φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):6C2480,628
(C2xC6xDic5):7C2 = (C2xC10):4D12φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):7C2480,642
(C2xC6xDic5):8C2 = C22xS3xDic5φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):8C2480,1115
(C2xC6xDic5):9C2 = C2xDic3.D10φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):9C2480,1116
(C2xC6xDic5):10C2 = C22xD30.C2φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):10C2480,1117
(C2xC6xDic5):11C2 = C22xC5:D12φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):11C2480,1120
(C2xC6xDic5):12C2 = C3xDic5:4D4φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):12C2480,674
(C2xC6xDic5):13C2 = C3xC22.D20φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):13C2480,679
(C2xC6xDic5):14C2 = C6xD10:C4φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):14C2480,720
(C2xC6xDic5):15C2 = C3xD4xDic5φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):15C2480,727
(C2xC6xDic5):16C2 = C3xC23.18D10φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):16C2480,728
(C2xC6xDic5):17C2 = C3xDic5:D4φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):17C2480,732
(C2xC6xDic5):18C2 = C6xC23.D5φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):18C2480,745
(C2xC6xDic5):19C2 = C6xD4:2D5φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):19C2480,1140
(C2xC6xDic5):20C2 = C2xC6xC5:D4φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5):20C2480,1149
(C2xC6xDic5):21C2 = D5xC22xC12φ: trivial image240(C2xC6xDic5):21C2480,1136

Non-split extensions G=N.Q with N=C2xC6xDic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC6xDic5).1C2 = C30.24C42φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).1C2480,70
(C2xC6xDic5).2C2 = C2xDic3xDic5φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).2C2480,603
(C2xC6xDic5).3C2 = (C6xDic5):7C4φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5).3C2480,604
(C2xC6xDic5).4C2 = C2xC30.Q8φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).4C2480,617
(C2xC6xDic5).5C2 = C2xDic15:5C4φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).5C2480,620
(C2xC6xDic5).6C2 = C2xC6.Dic10φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).6C2480,621
(C2xC6xDic5).7C2 = (C2xC30):Q8φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5).7C2480,650
(C2xC6xDic5).8C2 = C22xC15:Q8φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).8C2480,1121
(C2xC6xDic5).9C2 = C3xC10.10C42φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).9C2480,109
(C2xC6xDic5).10C2 = C3xC23.11D10φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5).10C2480,670
(C2xC6xDic5).11C2 = C3xDic5.14D4φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5).11C2480,671
(C2xC6xDic5).12C2 = C6xC10.D4φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).12C2480,716
(C2xC6xDic5).13C2 = C6xC4:Dic5φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).13C2480,718
(C2xC6xDic5).14C2 = C2xC6xDic10φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).14C2480,1135
(C2xC6xDic5).15C2 = C30.22M4(2)φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5).15C2480,317
(C2xC6xDic5).16C2 = C22xC15:C8φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).16C2480,1070
(C2xC6xDic5).17C2 = C2xC15:8M4(2)φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5).17C2480,1071
(C2xC6xDic5).18C2 = C3xC23.2F5φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5).18C2480,292
(C2xC6xDic5).19C2 = C2xC6xC5:C8φ: C2/C1C2 ⊆ Out C2xC6xDic5480(C2xC6xDic5).19C2480,1057
(C2xC6xDic5).20C2 = C6xC22.F5φ: C2/C1C2 ⊆ Out C2xC6xDic5240(C2xC6xDic5).20C2480,1058
(C2xC6xDic5).21C2 = Dic5xC2xC12φ: trivial image480(C2xC6xDic5).21C2480,715

׿
x
:
Z
F
o
wr
Q
<