Extensions 1→N→G→Q→1 with N=C5xC3:Q16 and Q=C2

Direct product G=NxQ with N=C5xC3:Q16 and Q=C2
dρLabelID
C10xC3:Q16480C10xC3:Q16480,822

Semidirect products G=N:Q with N=C5xC3:Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xC3:Q16):1C2 = D5xC3:Q16φ: C2/C1C2 ⊆ Out C5xC3:Q162408-(C5xC3:Q16):1C2480,583
(C5xC3:Q16):2C2 = D20.13D6φ: C2/C1C2 ⊆ Out C5xC3:Q162408-(C5xC3:Q16):2C2480,584
(C5xC3:Q16):3C2 = D15:Q16φ: C2/C1C2 ⊆ Out C5xC3:Q162408-(C5xC3:Q16):3C2480,587
(C5xC3:Q16):4C2 = C60.C23φ: C2/C1C2 ⊆ Out C5xC3:Q162408+(C5xC3:Q16):4C2480,588
(C5xC3:Q16):5C2 = C60.39C23φ: C2/C1C2 ⊆ Out C5xC3:Q162408+(C5xC3:Q16):5C2480,591
(C5xC3:Q16):6C2 = D20.D6φ: C2/C1C2 ⊆ Out C5xC3:Q162408+(C5xC3:Q16):6C2480,592
(C5xC3:Q16):7C2 = D20.16D6φ: C2/C1C2 ⊆ Out C5xC3:Q162408+(C5xC3:Q16):7C2480,597
(C5xC3:Q16):8C2 = D20.17D6φ: C2/C1C2 ⊆ Out C5xC3:Q162408-(C5xC3:Q16):8C2480,598
(C5xC3:Q16):9C2 = C5xD4.D6φ: C2/C1C2 ⊆ Out C5xC3:Q162404(C5xC3:Q16):9C2480,794
(C5xC3:Q16):10C2 = C5xQ8.7D6φ: C2/C1C2 ⊆ Out C5xC3:Q162404(C5xC3:Q16):10C2480,795
(C5xC3:Q16):11C2 = C5xS3xQ16φ: C2/C1C2 ⊆ Out C5xC3:Q162404(C5xC3:Q16):11C2480,796
(C5xC3:Q16):12C2 = C5xQ16:S3φ: C2/C1C2 ⊆ Out C5xC3:Q162404(C5xC3:Q16):12C2480,797
(C5xC3:Q16):13C2 = C5xQ8.11D6φ: C2/C1C2 ⊆ Out C5xC3:Q162404(C5xC3:Q16):13C2480,821
(C5xC3:Q16):14C2 = C5xQ8.14D6φ: C2/C1C2 ⊆ Out C5xC3:Q162404(C5xC3:Q16):14C2480,830
(C5xC3:Q16):15C2 = C5xQ8.13D6φ: trivial image2404(C5xC3:Q16):15C2480,829


׿
x
:
Z
F
o
wr
Q
<