Extensions 1→N→G→Q→1 with N=C5xC6.D4 and Q=C2

Direct product G=NxQ with N=C5xC6.D4 and Q=C2
dρLabelID
C10xC6.D4240C10xC6.D4480,831

Semidirect products G=N:Q with N=C5xC6.D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xC6.D4):1C2 = (C2xC6).D20φ: C2/C1C2 ⊆ Out C5xC6.D41204(C5xC6.D4):1C2480,71
(C5xC6.D4):2C2 = C15:9(C23:C4)φ: C2/C1C2 ⊆ Out C5xC6.D41204(C5xC6.D4):2C2480,73
(C5xC6.D4):3C2 = Dic15.19D4φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):3C2480,602
(C5xC6.D4):4C2 = D30:6D4φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):4C2480,609
(C5xC6.D4):5C2 = C6.(D4xD5)φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):5C2480,610
(C5xC6.D4):6C2 = C6.(C2xD20)φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):6C2480,613
(C5xC6.D4):7C2 = C6.D4:D5φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):7C2480,622
(C5xC6.D4):8C2 = D5xC6.D4φ: C2/C1C2 ⊆ Out C5xC6.D4120(C5xC6.D4):8C2480,623
(C5xC6.D4):9C2 = C23.17(S3xD5)φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):9C2480,624
(C5xC6.D4):10C2 = Dic15:3D4φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):10C2480,626
(C5xC6.D4):11C2 = C15:26(C4xD4)φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):11C2480,628
(C5xC6.D4):12C2 = Dic15:16D4φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):12C2480,635
(C5xC6.D4):13C2 = D30.45D4φ: C2/C1C2 ⊆ Out C5xC6.D4120(C5xC6.D4):13C2480,637
(C5xC6.D4):14C2 = D30.16D4φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):14C2480,638
(C5xC6.D4):15C2 = (C2xC6):8D20φ: C2/C1C2 ⊆ Out C5xC6.D4120(C5xC6.D4):15C2480,640
(C5xC6.D4):16C2 = D30:18D4φ: C2/C1C2 ⊆ Out C5xC6.D4120(C5xC6.D4):16C2480,648
(C5xC6.D4):17C2 = C5xC23.6D6φ: C2/C1C2 ⊆ Out C5xC6.D41204(C5xC6.D4):17C2480,125
(C5xC6.D4):18C2 = C5xC23.7D6φ: C2/C1C2 ⊆ Out C5xC6.D41204(C5xC6.D4):18C2480,153
(C5xC6.D4):19C2 = C5xS3xC22:C4φ: C2/C1C2 ⊆ Out C5xC6.D4120(C5xC6.D4):19C2480,759
(C5xC6.D4):20C2 = C5xC23.9D6φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):20C2480,762
(C5xC6.D4):21C2 = C5xC23.11D6φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):21C2480,764
(C5xC6.D4):22C2 = C5xC23.28D6φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):22C2480,808
(C5xC6.D4):23C2 = C5xD4xDic3φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):23C2480,813
(C5xC6.D4):24C2 = C5xC23.23D6φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):24C2480,814
(C5xC6.D4):25C2 = C5xC23.12D6φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):25C2480,815
(C5xC6.D4):26C2 = C5xC23:2D6φ: C2/C1C2 ⊆ Out C5xC6.D4120(C5xC6.D4):26C2480,816
(C5xC6.D4):27C2 = C5xD6:3D4φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):27C2480,817
(C5xC6.D4):28C2 = C5xC23.14D6φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4):28C2480,818
(C5xC6.D4):29C2 = C5xC24:4S3φ: C2/C1C2 ⊆ Out C5xC6.D4120(C5xC6.D4):29C2480,832
(C5xC6.D4):30C2 = C20xC3:D4φ: trivial image240(C5xC6.D4):30C2480,807

Non-split extensions G=N.Q with N=C5xC6.D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xC6.D4).1C2 = (C6xDic5):7C4φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4).1C2480,604
(C5xC6.D4).2C2 = C23.13(S3xD5)φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4).2C2480,606
(C5xC6.D4).3C2 = C23.14(S3xD5)φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4).3C2480,607
(C5xC6.D4).4C2 = C23.48(S3xD5)φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4).4C2480,608
(C5xC6.D4).5C2 = (C2xC30):Q8φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4).5C2480,650
(C5xC6.D4).6C2 = Dic15.48D4φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4).6C2480,652
(C5xC6.D4).7C2 = C5xC23.16D6φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4).7C2480,756
(C5xC6.D4).8C2 = C5xDic3.D4φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4).8C2480,757
(C5xC6.D4).9C2 = C5xC23.8D6φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4).9C2480,758
(C5xC6.D4).10C2 = C5xC12.48D4φ: C2/C1C2 ⊆ Out C5xC6.D4240(C5xC6.D4).10C2480,803
(C5xC6.D4).11C2 = C5xC23.26D6φ: trivial image240(C5xC6.D4).11C2480,805

׿
x
:
Z
F
o
wr
Q
<