Extensions 1→N→G→Q→1 with N=C6xC5:D4 and Q=C2

Direct product G=NxQ with N=C6xC5:D4 and Q=C2
dρLabelID
C2xC6xC5:D4240C2xC6xC5:D4480,1149

Semidirect products G=N:Q with N=C6xC5:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xC5:D4):1C2 = D30:6D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):1C2480,609
(C6xC5:D4):2C2 = (C6xD5):D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):2C2480,625
(C6xC5:D4):3C2 = Dic15:3D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):3C2480,626
(C6xC5:D4):4C2 = (S3xC10):D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):4C2480,641
(C6xC5:D4):5C2 = Dic15:5D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):5C2480,643
(C6xC5:D4):6C2 = C15:C22wrC2φ: C2/C1C2 ⊆ Out C6xC5:D4120(C6xC5:D4):6C2480,644
(C6xC5:D4):7C2 = (C2xC6):D20φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):7C2480,645
(C6xC5:D4):8C2 = Dic15:18D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):8C2480,647
(C6xC5:D4):9C2 = D30:18D4φ: C2/C1C2 ⊆ Out C6xC5:D4120(C6xC5:D4):9C2480,648
(C6xC5:D4):10C2 = D30:8D4φ: C2/C1C2 ⊆ Out C6xC5:D4120(C6xC5:D4):10C2480,653
(C6xC5:D4):11C2 = C2xDic5.D6φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):11C2480,1113
(C6xC5:D4):12C2 = C2xC30.C23φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):12C2480,1114
(C6xC5:D4):13C2 = C2xS3xC5:D4φ: C2/C1C2 ⊆ Out C6xC5:D4120(C6xC5:D4):13C2480,1123
(C6xC5:D4):14C2 = C2xD10:D6φ: C2/C1C2 ⊆ Out C6xC5:D4120(C6xC5:D4):14C2480,1124
(C6xC5:D4):15C2 = C15:2+ 1+4φ: C2/C1C2 ⊆ Out C6xC5:D41204(C6xC5:D4):15C2480,1125
(C6xC5:D4):16C2 = C3xC22:D20φ: C2/C1C2 ⊆ Out C6xC5:D4120(C6xC5:D4):16C2480,675
(C6xC5:D4):17C2 = C3xD10:D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):17C2480,677
(C6xC5:D4):18C2 = C3xC20:7D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):18C2480,723
(C6xC5:D4):19C2 = C3xC23:D10φ: C2/C1C2 ⊆ Out C6xC5:D4120(C6xC5:D4):19C2480,730
(C6xC5:D4):20C2 = C3xC20:2D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):20C2480,731
(C6xC5:D4):21C2 = C3xDic5:D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):21C2480,732
(C6xC5:D4):22C2 = C3xC20:D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):22C2480,733
(C6xC5:D4):23C2 = C3xC24:2D5φ: C2/C1C2 ⊆ Out C6xC5:D4120(C6xC5:D4):23C2480,746
(C6xC5:D4):24C2 = C6xD4xD5φ: C2/C1C2 ⊆ Out C6xC5:D4120(C6xC5:D4):24C2480,1139
(C6xC5:D4):25C2 = C6xD4:2D5φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4):25C2480,1140
(C6xC5:D4):26C2 = C3xD4:6D10φ: C2/C1C2 ⊆ Out C6xC5:D41204(C6xC5:D4):26C2480,1141
(C6xC5:D4):27C2 = C6xC4oD20φ: trivial image240(C6xC5:D4):27C2480,1138

Non-split extensions G=N.Q with N=C6xC5:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xC5:D4).1C2 = (C2xC6).D20φ: C2/C1C2 ⊆ Out C6xC5:D41204(C6xC5:D4).1C2480,71
(C6xC5:D4).2C2 = C6.(D4xD5)φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4).2C2480,610
(C6xC5:D4).3C2 = (C2xC30).D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4).3C2480,612
(C6xC5:D4).4C2 = C6.(C2xD20)φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4).4C2480,613
(C6xC5:D4).5C2 = C23.17(S3xD5)φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4).5C2480,624
(C6xC5:D4).6C2 = Dic3xC5:D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4).6C2480,629
(C6xC5:D4).7C2 = Dic15:16D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4).7C2480,635
(C6xC5:D4).8C2 = C3xC23.1D10φ: C2/C1C2 ⊆ Out C6xC5:D41204(C6xC5:D4).8C2480,84
(C6xC5:D4).9C2 = C3xDic5:4D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4).9C2480,674
(C6xC5:D4).10C2 = C3xD10.12D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4).10C2480,676
(C6xC5:D4).11C2 = C3xDic5.5D4φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4).11C2480,678
(C6xC5:D4).12C2 = C3xC22.D20φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4).12C2480,679
(C6xC5:D4).13C2 = C3xC23.23D10φ: C2/C1C2 ⊆ Out C6xC5:D4240(C6xC5:D4).13C2480,722
(C6xC5:D4).14C2 = C3:(C23:F5)φ: C2/C1C2 ⊆ Out C6xC5:D41204(C6xC5:D4).14C2480,316
(C6xC5:D4).15C2 = C5:(C12.D4)φ: C2/C1C2 ⊆ Out C6xC5:D41204(C6xC5:D4).15C2480,318
(C6xC5:D4).16C2 = C3xC23:F5φ: C2/C1C2 ⊆ Out C6xC5:D41204(C6xC5:D4).16C2480,291
(C6xC5:D4).17C2 = C3xC23.F5φ: C2/C1C2 ⊆ Out C6xC5:D41204(C6xC5:D4).17C2480,293
(C6xC5:D4).18C2 = C12xC5:D4φ: trivial image240(C6xC5:D4).18C2480,721

׿
x
:
Z
F
o
wr
Q
<