Extensions 1→N→G→Q→1 with N=C10xD12 and Q=C2

Direct product G=NxQ with N=C10xD12 and Q=C2
dρLabelID
C2xC10xD12240C2xC10xD12480,1152

Semidirect products G=N:Q with N=C10xD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10xD12):1C2 = D20:21D6φ: C2/C1C2 ⊆ Out C10xD121204(C10xD12):1C2480,375
(C10xD12):2C2 = D60:36C22φ: C2/C1C2 ⊆ Out C10xD121204(C10xD12):2C2480,380
(C10xD12):3C2 = D20:26D6φ: C2/C1C2 ⊆ Out C10xD121204(C10xD12):3C2480,1094
(C10xD12):4C2 = C2xC5:D24φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):4C2480,378
(C10xD12):5C2 = C60:D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):5C2480,525
(C10xD12):6C2 = C20:D12φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):6C2480,527
(C10xD12):7C2 = C2xD12:5D5φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):7C2480,1084
(C10xD12):8C2 = C2xD5xD12φ: C2/C1C2 ⊆ Out C10xD12120(C10xD12):8C2480,1087
(C10xD12):9C2 = C2xC15:D8φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):9C2480,372
(C10xD12):10C2 = C60:10D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):10C2480,539
(C10xD12):11C2 = C20:2D12φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):11C2480,542
(C10xD12):12C2 = C2xD12:D5φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):12C2480,1079
(C10xD12):13C2 = C2xC20:D6φ: C2/C1C2 ⊆ Out C10xD12120(C10xD12):13C2480,1089
(C10xD12):14C2 = Dic5:D12φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):14C2480,492
(C10xD12):15C2 = Dic15:2D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):15C2480,529
(C10xD12):16C2 = D30:4D4φ: C2/C1C2 ⊆ Out C10xD12120(C10xD12):16C2480,551
(C10xD12):17C2 = C5xC4:D12φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):17C2480,753
(C10xD12):18C2 = C5xD6:D4φ: C2/C1C2 ⊆ Out C10xD12120(C10xD12):18C2480,761
(C10xD12):19C2 = C5xDic3:D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):19C2480,763
(C10xD12):20C2 = C5xC12:D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):20C2480,774
(C10xD12):21C2 = C10xD24φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):21C2480,782
(C10xD12):22C2 = C5xC12:7D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):22C2480,809
(C10xD12):23C2 = C5xC8:D6φ: C2/C1C2 ⊆ Out C10xD121204(C10xD12):23C2480,787
(C10xD12):24C2 = C10xD4:S3φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):24C2480,810
(C10xD12):25C2 = C5xC12:3D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):25C2480,819
(C10xD12):26C2 = C5xD4:D6φ: C2/C1C2 ⊆ Out C10xD121204(C10xD12):26C2480,828
(C10xD12):27C2 = S3xD4xC10φ: C2/C1C2 ⊆ Out C10xD12120(C10xD12):27C2480,1154
(C10xD12):28C2 = C10xQ8:3S3φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12):28C2480,1158
(C10xD12):29C2 = C5xD4oD12φ: C2/C1C2 ⊆ Out C10xD121204(C10xD12):29C2480,1161
(C10xD12):30C2 = C10xC4oD12φ: trivial image240(C10xD12):30C2480,1153

Non-split extensions G=N.Q with N=C10xD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10xD12).1C2 = C20.5D12φ: C2/C1C2 ⊆ Out C10xD121204(C10xD12).1C2480,35
(C10xD12).2C2 = C10.D24φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).2C2480,43
(C10xD12).3C2 = C2xD12.D5φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).3C2480,392
(C10xD12).4C2 = C60.69D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).4C2480,449
(C10xD12).5C2 = Dic5xD12φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).5C2480,491
(C10xD12).6C2 = D12:Dic5φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).6C2480,42
(C10xD12).7C2 = C2xC20.D6φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).7C2480,384
(C10xD12).8C2 = C60.89D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).8C2480,446
(C10xD12).9C2 = Dic15:8D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).9C2480,511
(C10xD12).10C2 = C5xC2.D24φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).10C2480,140
(C10xD12).11C2 = (C2xD12).D5φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).11C2480,499
(C10xD12).12C2 = C5xC42:7S3φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).12C2480,754
(C10xD12).13C2 = C5xD6.D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).13C2480,773
(C10xD12).14C2 = C10xC24:C2φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).14C2480,781
(C10xD12).15C2 = C5xC6.D8φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).15C2480,128
(C10xD12).16C2 = C5xC12.46D4φ: C2/C1C2 ⊆ Out C10xD121204(C10xD12).16C2480,142
(C10xD12).17C2 = C5xDic3:5D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).17C2480,772
(C10xD12).18C2 = C10xQ8:2S3φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).18C2480,820
(C10xD12).19C2 = C5xC12.23D4φ: C2/C1C2 ⊆ Out C10xD12240(C10xD12).19C2480,826
(C10xD12).20C2 = C20xD12φ: trivial image240(C10xD12).20C2480,752

׿
x
:
Z
F
o
wr
Q
<