Extensions 1→N→G→Q→1 with N=C2×C8 and Q=C3×D5

Direct product G=N×Q with N=C2×C8 and Q=C3×D5
dρLabelID
D5×C2×C24240D5xC2xC24480,692

Semidirect products G=N:Q with N=C2×C8 and Q=C3×D5
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1(C3×D5) = C3×D101C8φ: C3×D5/C15C2 ⊆ Aut C2×C8240(C2xC8):1(C3xD5)480,98
(C2×C8)⋊2(C3×D5) = C3×D205C4φ: C3×D5/C15C2 ⊆ Aut C2×C8240(C2xC8):2(C3xD5)480,99
(C2×C8)⋊3(C3×D5) = C6×D40φ: C3×D5/C15C2 ⊆ Aut C2×C8240(C2xC8):3(C3xD5)480,696
(C2×C8)⋊4(C3×D5) = C3×D407C2φ: C3×D5/C15C2 ⊆ Aut C2×C82402(C2xC8):4(C3xD5)480,697
(C2×C8)⋊5(C3×D5) = C6×C40⋊C2φ: C3×D5/C15C2 ⊆ Aut C2×C8240(C2xC8):5(C3xD5)480,695
(C2×C8)⋊6(C3×D5) = C6×C8⋊D5φ: C3×D5/C15C2 ⊆ Aut C2×C8240(C2xC8):6(C3xD5)480,693
(C2×C8)⋊7(C3×D5) = C3×D20.3C4φ: C3×D5/C15C2 ⊆ Aut C2×C82402(C2xC8):7(C3xD5)480,694

Non-split extensions G=N.Q with N=C2×C8 and Q=C3×D5
extensionφ:Q→Aut NdρLabelID
(C2×C8).1(C3×D5) = C3×C20.8Q8φ: C3×D5/C15C2 ⊆ Aut C2×C8480(C2xC8).1(C3xD5)480,92
(C2×C8).2(C3×D5) = C3×C20.44D4φ: C3×D5/C15C2 ⊆ Aut C2×C8480(C2xC8).2(C3xD5)480,94
(C2×C8).3(C3×D5) = C3×C405C4φ: C3×D5/C15C2 ⊆ Aut C2×C8480(C2xC8).3(C3xD5)480,96
(C2×C8).4(C3×D5) = C6×Dic20φ: C3×D5/C15C2 ⊆ Aut C2×C8480(C2xC8).4(C3xD5)480,698
(C2×C8).5(C3×D5) = C3×C40.6C4φ: C3×D5/C15C2 ⊆ Aut C2×C82402(C2xC8).5(C3xD5)480,97
(C2×C8).6(C3×D5) = C3×C406C4φ: C3×D5/C15C2 ⊆ Aut C2×C8480(C2xC8).6(C3xD5)480,95
(C2×C8).7(C3×D5) = C3×C20.4C8φ: C3×D5/C15C2 ⊆ Aut C2×C82402(C2xC8).7(C3xD5)480,90
(C2×C8).8(C3×D5) = C3×C408C4φ: C3×D5/C15C2 ⊆ Aut C2×C8480(C2xC8).8(C3xD5)480,93
(C2×C8).9(C3×D5) = C6×C52C16central extension (φ=1)480(C2xC8).9(C3xD5)480,89
(C2×C8).10(C3×D5) = Dic5×C24central extension (φ=1)480(C2xC8).10(C3xD5)480,91

׿
×
𝔽