Extensions 1→N→G→Q→1 with N=C5 and Q=Dic3:4D4

Direct product G=NxQ with N=C5 and Q=Dic3:4D4
dρLabelID
C5xDic3:4D4240C5xDic3:4D4480,760

Semidirect products G=N:Q with N=C5 and Q=Dic3:4D4
extensionφ:Q→Aut NdρLabelID
C5:(Dic3:4D4) = C3:D4:F5φ: Dic3:4D4/C3:D4C4 ⊆ Aut C5608C5:(Dic3:4D4)480,1012
C5:2(Dic3:4D4) = Dic3:4D20φ: Dic3:4D4/C4xDic3C2 ⊆ Aut C5240C5:2(Dic3:4D4)480,471
C5:3(Dic3:4D4) = Dic15:13D4φ: Dic3:4D4/Dic3:C4C2 ⊆ Aut C5240C5:3(Dic3:4D4)480,472
C5:4(Dic3:4D4) = Dic15:9D4φ: Dic3:4D4/D6:C4C2 ⊆ Aut C5240C5:4(Dic3:4D4)480,518
C5:5(Dic3:4D4) = Dic15:19D4φ: Dic3:4D4/C3xC22:C4C2 ⊆ Aut C5240C5:5(Dic3:4D4)480,846
C5:6(Dic3:4D4) = C15:17(C4xD4)φ: Dic3:4D4/S3xC2xC4C2 ⊆ Aut C5240C5:6(Dic3:4D4)480,517
C5:7(Dic3:4D4) = C15:28(C4xD4)φ: Dic3:4D4/C22xDic3C2 ⊆ Aut C5240C5:7(Dic3:4D4)480,632
C5:8(Dic3:4D4) = Dic15:17D4φ: Dic3:4D4/C2xC3:D4C2 ⊆ Aut C5240C5:8(Dic3:4D4)480,636


׿
x
:
Z
F
o
wr
Q
<