Extensions 1→N→G→Q→1 with N=C5 and Q=Dic34D4

Direct product G=N×Q with N=C5 and Q=Dic34D4
dρLabelID
C5×Dic34D4240C5xDic3:4D4480,760

Semidirect products G=N:Q with N=C5 and Q=Dic34D4
extensionφ:Q→Aut NdρLabelID
C5⋊(Dic34D4) = C3⋊D4⋊F5φ: Dic34D4/C3⋊D4C4 ⊆ Aut C5608C5:(Dic3:4D4)480,1012
C52(Dic34D4) = Dic34D20φ: Dic34D4/C4×Dic3C2 ⊆ Aut C5240C5:2(Dic3:4D4)480,471
C53(Dic34D4) = Dic1513D4φ: Dic34D4/Dic3⋊C4C2 ⊆ Aut C5240C5:3(Dic3:4D4)480,472
C54(Dic34D4) = Dic159D4φ: Dic34D4/D6⋊C4C2 ⊆ Aut C5240C5:4(Dic3:4D4)480,518
C55(Dic34D4) = Dic1519D4φ: Dic34D4/C3×C22⋊C4C2 ⊆ Aut C5240C5:5(Dic3:4D4)480,846
C56(Dic34D4) = C1517(C4×D4)φ: Dic34D4/S3×C2×C4C2 ⊆ Aut C5240C5:6(Dic3:4D4)480,517
C57(Dic34D4) = C1528(C4×D4)φ: Dic34D4/C22×Dic3C2 ⊆ Aut C5240C5:7(Dic3:4D4)480,632
C58(Dic34D4) = Dic1517D4φ: Dic34D4/C2×C3⋊D4C2 ⊆ Aut C5240C5:8(Dic3:4D4)480,636


׿
×
𝔽