Extensions 1→N→G→Q→1 with N=S3×C52C8 and Q=C2

Direct product G=N×Q with N=S3×C52C8 and Q=C2
dρLabelID
C2×S3×C52C8240C2xS3xC5:2C8480,361

Semidirect products G=N:Q with N=S3×C52C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C52C8)⋊1C2 = S3×D4⋊D5φ: C2/C1C2 ⊆ Out S3×C52C81208+(S3xC5:2C8):1C2480,555
(S3×C52C8)⋊2C2 = S3×D4.D5φ: C2/C1C2 ⊆ Out S3×C52C81208-(S3xC5:2C8):2C2480,561
(S3×C52C8)⋊3C2 = D20.24D6φ: C2/C1C2 ⊆ Out S3×C52C82408-(S3xC5:2C8):3C2480,569
(S3×C52C8)⋊4C2 = C60.19C23φ: C2/C1C2 ⊆ Out S3×C52C82408+(S3xC5:2C8):4C2480,571
(S3×C52C8)⋊5C2 = S3×Q8⋊D5φ: C2/C1C2 ⊆ Out S3×C52C81208+(S3xC5:2C8):5C2480,579
(S3×C52C8)⋊6C2 = D20.27D6φ: C2/C1C2 ⊆ Out S3×C52C82408-(S3xC5:2C8):6C2480,593
(S3×C52C8)⋊7C2 = Dic10.27D6φ: C2/C1C2 ⊆ Out S3×C52C82408+(S3xC5:2C8):7C2480,595
(S3×C52C8)⋊8C2 = S3×C8⋊D5φ: C2/C1C2 ⊆ Out S3×C52C81204(S3xC5:2C8):8C2480,321
(S3×C52C8)⋊9C2 = C40.34D6φ: C2/C1C2 ⊆ Out S3×C52C82404(S3xC5:2C8):9C2480,342
(S3×C52C8)⋊10C2 = C40.35D6φ: C2/C1C2 ⊆ Out S3×C52C82404(S3xC5:2C8):10C2480,344
(S3×C52C8)⋊11C2 = D12.2Dic5φ: C2/C1C2 ⊆ Out S3×C52C82404(S3xC5:2C8):11C2480,362
(S3×C52C8)⋊12C2 = S3×C4.Dic5φ: C2/C1C2 ⊆ Out S3×C52C81204(S3xC5:2C8):12C2480,363
(S3×C52C8)⋊13C2 = D12.Dic5φ: C2/C1C2 ⊆ Out S3×C52C82404(S3xC5:2C8):13C2480,364
(S3×C52C8)⋊14C2 = S3×C8×D5φ: trivial image1204(S3xC5:2C8):14C2480,319

Non-split extensions G=N.Q with N=S3×C52C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C52C8).1C2 = S3×C5⋊Q16φ: C2/C1C2 ⊆ Out S3×C52C82408-(S3xC5:2C8).1C2480,585
(S3×C52C8).2C2 = S3×C5⋊C16φ: C2/C1C2 ⊆ Out S3×C52C82408(S3xC5:2C8).2C2480,239
(S3×C52C8).3C2 = C15⋊M5(2)φ: C2/C1C2 ⊆ Out S3×C52C82408(S3xC5:2C8).3C2480,241

׿
×
𝔽