Extensions 1→N→G→Q→1 with N=C2×C8 and Q=C30

Direct product G=N×Q with N=C2×C8 and Q=C30
dρLabelID
C22×C120480C2^2xC120480,934

Semidirect products G=N:Q with N=C2×C8 and Q=C30
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1C30 = C15×C22⋊C8φ: C30/C15C2 ⊆ Aut C2×C8240(C2xC8):1C30480,201
(C2×C8)⋊2C30 = C15×D4⋊C4φ: C30/C15C2 ⊆ Aut C2×C8240(C2xC8):2C30480,205
(C2×C8)⋊3C30 = D8×C30φ: C30/C15C2 ⊆ Aut C2×C8240(C2xC8):3C30480,937
(C2×C8)⋊4C30 = C15×C4○D8φ: C30/C15C2 ⊆ Aut C2×C82402(C2xC8):4C30480,940
(C2×C8)⋊5C30 = SD16×C30φ: C30/C15C2 ⊆ Aut C2×C8240(C2xC8):5C30480,938
(C2×C8)⋊6C30 = M4(2)×C30φ: C30/C15C2 ⊆ Aut C2×C8240(C2xC8):6C30480,935
(C2×C8)⋊7C30 = C15×C8○D4φ: C30/C15C2 ⊆ Aut C2×C82402(C2xC8):7C30480,936

Non-split extensions G=N.Q with N=C2×C8 and Q=C30
extensionφ:Q→Aut NdρLabelID
(C2×C8).1C30 = C15×Q8⋊C4φ: C30/C15C2 ⊆ Aut C2×C8480(C2xC8).1C30480,206
(C2×C8).2C30 = C15×C4⋊C8φ: C30/C15C2 ⊆ Aut C2×C8480(C2xC8).2C30480,208
(C2×C8).3C30 = C15×C2.D8φ: C30/C15C2 ⊆ Aut C2×C8480(C2xC8).3C30480,210
(C2×C8).4C30 = Q16×C30φ: C30/C15C2 ⊆ Aut C2×C8480(C2xC8).4C30480,939
(C2×C8).5C30 = C15×C8.C4φ: C30/C15C2 ⊆ Aut C2×C82402(C2xC8).5C30480,211
(C2×C8).6C30 = C15×C4.Q8φ: C30/C15C2 ⊆ Aut C2×C8480(C2xC8).6C30480,209
(C2×C8).7C30 = C15×C8⋊C4φ: C30/C15C2 ⊆ Aut C2×C8480(C2xC8).7C30480,200
(C2×C8).8C30 = C15×M5(2)φ: C30/C15C2 ⊆ Aut C2×C82402(C2xC8).8C30480,213

׿
×
𝔽