Extensions 1→N→G→Q→1 with N=C2xC6 and Q=Dic10

Direct product G=NxQ with N=C2xC6 and Q=Dic10
dρLabelID
C2xC6xDic10480C2xC6xDic10480,1135

Semidirect products G=N:Q with N=C2xC6 and Q=Dic10
extensionφ:Q→Aut NdρLabelID
(C2xC6):1Dic10 = (C2xC10):8Dic6φ: Dic10/C10C22 ⊆ Aut C2xC6240(C2xC6):1Dic10480,651
(C2xC6):2Dic10 = Dic15.48D4φ: Dic10/C10C22 ⊆ Aut C2xC6240(C2xC6):2Dic10480,652
(C2xC6):3Dic10 = C22:2Dic30φ: Dic10/C10C22 ⊆ Aut C2xC6240(C2xC6):3Dic10480,843
(C2xC6):4Dic10 = C3xDic5.14D4φ: Dic10/Dic5C2 ⊆ Aut C2xC6240(C2xC6):4Dic10480,671
(C2xC6):5Dic10 = (C2xC30):Q8φ: Dic10/Dic5C2 ⊆ Aut C2xC6240(C2xC6):5Dic10480,650
(C2xC6):6Dic10 = C22xC15:Q8φ: Dic10/Dic5C2 ⊆ Aut C2xC6480(C2xC6):6Dic10480,1121
(C2xC6):7Dic10 = C3xC20.48D4φ: Dic10/C20C2 ⊆ Aut C2xC6240(C2xC6):7Dic10480,717
(C2xC6):8Dic10 = C60.205D4φ: Dic10/C20C2 ⊆ Aut C2xC6240(C2xC6):8Dic10480,889
(C2xC6):9Dic10 = C22xDic30φ: Dic10/C20C2 ⊆ Aut C2xC6480(C2xC6):9Dic10480,1165

Non-split extensions G=N.Q with N=C2xC6 and Q=Dic10
extensionφ:Q→Aut NdρLabelID
(C2xC6).1Dic10 = C60.D4φ: Dic10/C10C22 ⊆ Aut C2xC62404(C2xC6).1Dic10480,68
(C2xC6).2Dic10 = C12.59D20φ: Dic10/C10C22 ⊆ Aut C2xC62404(C2xC6).2Dic10480,69
(C2xC6).3Dic10 = C60.210D4φ: Dic10/C10C22 ⊆ Aut C2xC62404(C2xC6).3Dic10480,182
(C2xC6).4Dic10 = C3xC20.53D4φ: Dic10/Dic5C2 ⊆ Aut C2xC62404(C2xC6).4Dic10480,100
(C2xC6).5Dic10 = C60.105D4φ: Dic10/Dic5C2 ⊆ Aut C2xC62404(C2xC6).5Dic10480,67
(C2xC6).6Dic10 = C30.24C42φ: Dic10/Dic5C2 ⊆ Aut C2xC6480(C2xC6).6Dic10480,70
(C2xC6).7Dic10 = C2xC30.Q8φ: Dic10/Dic5C2 ⊆ Aut C2xC6480(C2xC6).7Dic10480,617
(C2xC6).8Dic10 = C2xDic15:5C4φ: Dic10/Dic5C2 ⊆ Aut C2xC6480(C2xC6).8Dic10480,620
(C2xC6).9Dic10 = C2xC6.Dic10φ: Dic10/Dic5C2 ⊆ Aut C2xC6480(C2xC6).9Dic10480,621
(C2xC6).10Dic10 = C3xC40.6C4φ: Dic10/C20C2 ⊆ Aut C2xC62402(C2xC6).10Dic10480,97
(C2xC6).11Dic10 = C4.18D60φ: Dic10/C20C2 ⊆ Aut C2xC62402(C2xC6).11Dic10480,179
(C2xC6).12Dic10 = C30.29C42φ: Dic10/C20C2 ⊆ Aut C2xC6480(C2xC6).12Dic10480,191
(C2xC6).13Dic10 = C2xC30.4Q8φ: Dic10/C20C2 ⊆ Aut C2xC6480(C2xC6).13Dic10480,888
(C2xC6).14Dic10 = C2xC60:5C4φ: Dic10/C20C2 ⊆ Aut C2xC6480(C2xC6).14Dic10480,890
(C2xC6).15Dic10 = C3xC10.10C42central extension (φ=1)480(C2xC6).15Dic10480,109
(C2xC6).16Dic10 = C6xC10.D4central extension (φ=1)480(C2xC6).16Dic10480,716
(C2xC6).17Dic10 = C6xC4:Dic5central extension (φ=1)480(C2xC6).17Dic10480,718

׿
x
:
Z
F
o
wr
Q
<