Extensions 1→N→G→Q→1 with N=Dic20 and Q=S3

Direct product G=NxQ with N=Dic20 and Q=S3
dρLabelID
S3xDic202404-S3xDic20480,338

Semidirect products G=N:Q with N=Dic20 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic20:1S3 = C24.D10φ: S3/C3C2 ⊆ Out Dic202404+Dic20:1S3480,19
Dic20:2S3 = Dic20:S3φ: S3/C3C2 ⊆ Out Dic202404Dic20:2S3480,339
Dic20:3S3 = C15:SD32φ: S3/C3C2 ⊆ Out Dic202404Dic20:3S3480,17
Dic20:4S3 = Dic10.D6φ: S3/C3C2 ⊆ Out Dic202404Dic20:4S3480,340
Dic20:5S3 = D24:5D5φ: S3/C3C2 ⊆ Out Dic202404Dic20:5S3480,355
Dic20:6S3 = D30.4D4φ: S3/C3C2 ⊆ Out Dic202404Dic20:6S3480,356
Dic20:7S3 = D120:5C2φ: trivial image2404+Dic20:7S3480,351

Non-split extensions G=N.Q with N=Dic20 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic20.1S3 = C3:Dic40φ: S3/C3C2 ⊆ Out Dic204804-Dic20.1S3480,23
Dic20.2S3 = C15:Q32φ: S3/C3C2 ⊆ Out Dic204804Dic20.2S3480,22

׿
x
:
Z
F
o
wr
Q
<