Extensions 1→N→G→Q→1 with N=C3.He3 and Q=C6

Direct product G=N×Q with N=C3.He3 and Q=C6
dρLabelID
C6×C3.He3162C6xC3.He3486,213

Semidirect products G=N:Q with N=C3.He3 and Q=C6
extensionφ:Q→Out NdρLabelID
C3.He3⋊C6 = C3.He3⋊C6φ: C6/C1C6 ⊆ Out C3.He32718+C3.He3:C6486,179
C3.He32C6 = C2×C92⋊C3φ: C6/C2C3 ⊆ Out C3.He3543C3.He3:2C6486,85
C3.He33C6 = C2×C32.He3φ: C6/C2C3 ⊆ Out C3.He3549C3.He3:3C6486,88
C3.He34C6 = C2×C32.6He3φ: C6/C2C3 ⊆ Out C3.He3549C3.He3:4C6486,90
C3.He35C6 = C2×C32.C33φ: C6/C2C3 ⊆ Out C3.He3549C3.He3:5C6486,218
C3.He36C6 = C2×C9.2He3φ: C6/C2C3 ⊆ Out C3.He3549C3.He3:6C6486,219
C3.He37C6 = C3×3- 1+2.S3φ: C6/C3C2 ⊆ Out C3.He3546C3.He3:7C6486,174
C3.He38C6 = C2×C9.He3φ: trivial image543C3.He3:8C6486,214

Non-split extensions G=N.Q with N=C3.He3 and Q=C6
extensionφ:Q→Out NdρLabelID
C3.He3.1C6 = C92.S3φ: C6/C1C6 ⊆ Out C3.He3276+C3.He3.1C6486,38
C3.He3.2C6 = C9⋊C9.S3φ: C6/C1C6 ⊆ Out C3.He32718+C3.He3.2C6486,39
C3.He3.3C6 = C9⋊C9.3S3φ: C6/C1C6 ⊆ Out C3.He32718+C3.He3.3C6486,40
C3.He3.4C6 = C2×C92.C3φ: C6/C2C3 ⊆ Out C3.He3543C3.He3.4C6486,87
C3.He3.5C6 = C2×C32.5He3φ: C6/C2C3 ⊆ Out C3.He3549C3.He3.5C6486,89

׿
×
𝔽