Extensions 1→N→G→Q→1 with N=C9×C3⋊S3 and Q=C3

Direct product G=N×Q with N=C9×C3⋊S3 and Q=C3
dρLabelID
C3⋊S3×C3×C954C3:S3xC3xC9486,228

Semidirect products G=N:Q with N=C9×C3⋊S3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C9×C3⋊S3)⋊1C3 = C9×C32⋊C6φ: C3/C1C3 ⊆ Out C9×C3⋊S3546(C9xC3:S3):1C3486,98
(C9×C3⋊S3)⋊2C3 = C9⋊He3⋊C2φ: C3/C1C3 ⊆ Out C9×C3⋊S3546(C9xC3:S3):2C3486,107
(C9×C3⋊S3)⋊3C3 = C3⋊S3×3- 1+2φ: C3/C1C3 ⊆ Out C9×C3⋊S354(C9xC3:S3):3C3486,233

Non-split extensions G=N.Q with N=C9×C3⋊S3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C9×C3⋊S3).C3 = C32⋊C54φ: C3/C1C3 ⊆ Out C9×C3⋊S3546(C9xC3:S3).C3486,16
(C9×C3⋊S3).2C3 = C3⋊S3×C27φ: trivial image162(C9xC3:S3).2C3486,161

׿
×
𝔽