Copied to
clipboard

G = C3:S3xC3xC9order 486 = 2·35

Direct product of C3xC9 and C3:S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3:S3xC3xC9, C33:8C18, C34.13C6, (C33xC9):2C2, C32:5(S3xC9), (C32xC9):27S3, C32:6(C3xC18), (C32xC9):38C6, C33.53(C3xC6), C33.83(C3xS3), C32.46(S3xC32), C3:(S3xC3xC9), (C3xC9):29(C3xS3), C3.7(C32xC3:S3), (C32xC3:S3).4C3, (C3xC3:S3).6C32, C32.56(C3xC3:S3), SmallGroup(486,228)

Series: Derived Chief Lower central Upper central

C1C32 — C3:S3xC3xC9
C1C3C32C33C32xC9C33xC9 — C3:S3xC3xC9
C32 — C3:S3xC3xC9
C1C3xC9

Generators and relations for C3:S3xC3xC9
 G = < a,b,c,d,e | a3=b9=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 616 in 288 conjugacy classes, 70 normal (12 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C9, C32, C32, C32, C18, C3xS3, C3:S3, C3xC6, C3xC9, C3xC9, C3xC9, C33, C33, C33, S3xC9, C3xC18, S3xC32, C3xC3:S3, C3xC3:S3, C32xC9, C32xC9, C34, S3xC3xC9, C9xC3:S3, C32xC3:S3, C33xC9, C3:S3xC3xC9
Quotients: C1, C2, C3, S3, C6, C9, C32, C18, C3xS3, C3:S3, C3xC6, C3xC9, S3xC9, C3xC18, S3xC32, C3xC3:S3, S3xC3xC9, C9xC3:S3, C32xC3:S3, C3:S3xC3xC9

Smallest permutation representation of C3:S3xC3xC9
On 54 points
Generators in S54
(1 36 42)(2 28 43)(3 29 44)(4 30 45)(5 31 37)(6 32 38)(7 33 39)(8 34 40)(9 35 41)(10 25 49)(11 26 50)(12 27 51)(13 19 52)(14 20 53)(15 21 54)(16 22 46)(17 23 47)(18 24 48)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 36 42)(2 28 43)(3 29 44)(4 30 45)(5 31 37)(6 32 38)(7 33 39)(8 34 40)(9 35 41)(10 49 25)(11 50 26)(12 51 27)(13 52 19)(14 53 20)(15 54 21)(16 46 22)(17 47 23)(18 48 24)
(1 45 33)(2 37 34)(3 38 35)(4 39 36)(5 40 28)(6 41 29)(7 42 30)(8 43 31)(9 44 32)(10 22 52)(11 23 53)(12 24 54)(13 25 46)(14 26 47)(15 27 48)(16 19 49)(17 20 50)(18 21 51)
(1 54)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 28)(17 29)(18 30)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)(25 37)(26 38)(27 39)

G:=sub<Sym(54)| (1,36,42)(2,28,43)(3,29,44)(4,30,45)(5,31,37)(6,32,38)(7,33,39)(8,34,40)(9,35,41)(10,25,49)(11,26,50)(12,27,51)(13,19,52)(14,20,53)(15,21,54)(16,22,46)(17,23,47)(18,24,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,36,42)(2,28,43)(3,29,44)(4,30,45)(5,31,37)(6,32,38)(7,33,39)(8,34,40)(9,35,41)(10,49,25)(11,50,26)(12,51,27)(13,52,19)(14,53,20)(15,54,21)(16,46,22)(17,47,23)(18,48,24), (1,45,33)(2,37,34)(3,38,35)(4,39,36)(5,40,28)(6,41,29)(7,42,30)(8,43,31)(9,44,32)(10,22,52)(11,23,53)(12,24,54)(13,25,46)(14,26,47)(15,27,48)(16,19,49)(17,20,50)(18,21,51), (1,54)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,28)(17,29)(18,30)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,37)(26,38)(27,39)>;

G:=Group( (1,36,42)(2,28,43)(3,29,44)(4,30,45)(5,31,37)(6,32,38)(7,33,39)(8,34,40)(9,35,41)(10,25,49)(11,26,50)(12,27,51)(13,19,52)(14,20,53)(15,21,54)(16,22,46)(17,23,47)(18,24,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,36,42)(2,28,43)(3,29,44)(4,30,45)(5,31,37)(6,32,38)(7,33,39)(8,34,40)(9,35,41)(10,49,25)(11,50,26)(12,51,27)(13,52,19)(14,53,20)(15,54,21)(16,46,22)(17,47,23)(18,48,24), (1,45,33)(2,37,34)(3,38,35)(4,39,36)(5,40,28)(6,41,29)(7,42,30)(8,43,31)(9,44,32)(10,22,52)(11,23,53)(12,24,54)(13,25,46)(14,26,47)(15,27,48)(16,19,49)(17,20,50)(18,21,51), (1,54)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,28)(17,29)(18,30)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,37)(26,38)(27,39) );

G=PermutationGroup([[(1,36,42),(2,28,43),(3,29,44),(4,30,45),(5,31,37),(6,32,38),(7,33,39),(8,34,40),(9,35,41),(10,25,49),(11,26,50),(12,27,51),(13,19,52),(14,20,53),(15,21,54),(16,22,46),(17,23,47),(18,24,48)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,36,42),(2,28,43),(3,29,44),(4,30,45),(5,31,37),(6,32,38),(7,33,39),(8,34,40),(9,35,41),(10,49,25),(11,50,26),(12,51,27),(13,52,19),(14,53,20),(15,54,21),(16,46,22),(17,47,23),(18,48,24)], [(1,45,33),(2,37,34),(3,38,35),(4,39,36),(5,40,28),(6,41,29),(7,42,30),(8,43,31),(9,44,32),(10,22,52),(11,23,53),(12,24,54),(13,25,46),(14,26,47),(15,27,48),(16,19,49),(17,20,50),(18,21,51)], [(1,54),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,28),(17,29),(18,30),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45),(25,37),(26,38),(27,39)]])

162 conjugacy classes

class 1  2 3A···3H3I···3AR6A···6H9A···9R9S···9CL18A···18R
order123···33···36···69···99···918···18
size191···12···29···91···12···29···9

162 irreducible representations

dim111111112222
type+++
imageC1C2C3C3C6C6C9C18S3C3xS3C3xS3S3xC9
kernelC3:S3xC3xC9C33xC9C9xC3:S3C32xC3:S3C32xC9C34C3xC3:S3C33C32xC9C3xC9C33C32
# reps1162621818424872

Matrix representation of C3:S3xC3xC9 in GL4(F19) generated by

11000
01100
0070
0007
,
6000
0600
0040
0004
,
11000
0700
0070
00011
,
11000
0700
0010
0001
,
0100
1000
0001
0010
G:=sub<GL(4,GF(19))| [11,0,0,0,0,11,0,0,0,0,7,0,0,0,0,7],[6,0,0,0,0,6,0,0,0,0,4,0,0,0,0,4],[11,0,0,0,0,7,0,0,0,0,7,0,0,0,0,11],[11,0,0,0,0,7,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C3:S3xC3xC9 in GAP, Magma, Sage, TeX

C_3\rtimes S_3\times C_3\times C_9
% in TeX

G:=Group("C3:S3xC3xC9");
// GroupNames label

G:=SmallGroup(486,228);
// by ID

G=gap.SmallGroup(486,228);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,68,3244,11669]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^9=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<