Extensions 1→N→G→Q→1 with N=C3 and Q=He3:5S3

Direct product G=NxQ with N=C3 and Q=He3:5S3
dρLabelID
C3xHe3:5S354C3xHe3:5S3486,243

Semidirect products G=N:Q with N=C3 and Q=He3:5S3
extensionφ:Q→Aut NdρLabelID
C3:(He3:5S3) = C34:13S3φ: He3:5S3/C3xHe3C2 ⊆ Aut C354C3:(He3:5S3)486,248

Non-split extensions G=N.Q with N=C3 and Q=He3:5S3
extensionφ:Q→Aut NdρLabelID
C3.1(He3:5S3) = C33:6D9φ: He3:5S3/C3xHe3C2 ⊆ Aut C354C3.1(He3:5S3)486,181
C3.2(He3:5S3) = He3:4D9φ: He3:5S3/C3xHe3C2 ⊆ Aut C3546C3.2(He3:5S3)486,182
C3.3(He3:5S3) = C34:7S3φ: He3:5S3/C3xHe3C2 ⊆ Aut C327C3.3(He3:5S3)486,185
C3.4(He3:5S3) = He3.(C3:S3)φ: He3:5S3/C3xHe3C2 ⊆ Aut C381C3.4(He3:5S3)486,186
C3.5(He3:5S3) = C3:(He3:S3)φ: He3:5S3/C3xHe3C2 ⊆ Aut C381C3.5(He3:5S3)486,187
C3.6(He3:5S3) = (C32xC9).S3φ: He3:5S3/C3xHe3C2 ⊆ Aut C381C3.6(He3:5S3)486,188
C3.7(He3:5S3) = C3wrC3:S3φ: He3:5S3/C3xHe3C2 ⊆ Aut C3276+C3.7(He3:5S3)486,189
C3.8(He3:5S3) = C34:6S3central stem extension (φ=1)27C3.8(He3:5S3)486,183

׿
x
:
Z
F
o
wr
Q
<