Extensions 1→N→G→Q→1 with N=C9⋊C9 and Q=S3

Direct product G=N×Q with N=C9⋊C9 and Q=S3
dρLabelID
S3×C9⋊C9162S3xC9:C9486,97

Semidirect products G=N:Q with N=C9⋊C9 and Q=S3
extensionφ:Q→Out NdρLabelID
C9⋊C91S3 = C9⋊C9⋊S3φ: S3/C1S3 ⊆ Out C9⋊C92718+C9:C9:1S3486,41
C9⋊C92S3 = C9⋊C92S3φ: S3/C1S3 ⊆ Out C9⋊C9546C9:C9:2S3486,152
C9⋊C93S3 = C926S3φ: S3/C1S3 ⊆ Out C9⋊C9186C9:C9:3S3486,153
C9⋊C94S3 = C925S3φ: S3/C1S3 ⊆ Out C9⋊C9546C9:C9:4S3486,156
C9⋊C95S3 = C9⋊(S3×C9)φ: S3/C3C2 ⊆ Out C9⋊C954C9:C9:5S3486,138
C9⋊C96S3 = C923S3φ: S3/C3C2 ⊆ Out C9⋊C9546C9:C9:6S3486,139

Non-split extensions G=N.Q with N=C9⋊C9 and Q=S3
extensionφ:Q→Out NdρLabelID
C9⋊C9.1S3 = C27⋊C18φ: S3/C1S3 ⊆ Out C9⋊C92718+C9:C9.1S3486,31
C9⋊C9.2S3 = C9⋊C9.S3φ: S3/C1S3 ⊆ Out C9⋊C92718+C9:C9.2S3486,39
C9⋊C9.3S3 = C9⋊C9.3S3φ: S3/C1S3 ⊆ Out C9⋊C92718+C9:C9.3S3486,40

׿
×
𝔽