Extensions 1→N→G→Q→1 with N=C2×C9○He3 and Q=C3

Direct product G=N×Q with N=C2×C9○He3 and Q=C3
dρLabelID
C6×C9○He3162C6xC9oHe3486,253

Semidirect products G=N:Q with N=C2×C9○He3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C2×C9○He3)⋊1C3 = C2×C9.He3φ: C3/C1C3 ⊆ Out C2×C9○He3543(C2xC9oHe3):1C3486,214
(C2×C9○He3)⋊2C3 = C2×C9.2He3φ: C3/C1C3 ⊆ Out C2×C9○He3549(C2xC9oHe3):2C3486,219
(C2×C9○He3)⋊3C3 = C2×3- 1+4φ: C3/C1C3 ⊆ Out C2×C9○He3549(C2xC9oHe3):3C3486,255

Non-split extensions G=N.Q with N=C2×C9○He3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C2×C9○He3).1C3 = C2×C9.5He3φ: C3/C1C3 ⊆ Out C2×C9○He31623(C2xC9oHe3).1C3486,79
(C2×C9○He3).2C3 = C2×C9.6He3φ: C3/C1C3 ⊆ Out C2×C9○He31623(C2xC9oHe3).2C3486,80
(C2×C9○He3).3C3 = C2×C27○He3φ: trivial image1623(C2xC9oHe3).3C3486,209

׿
×
𝔽