Copied to
clipboard

G = C2×C9.6He3order 486 = 2·35

Direct product of C2 and C9.6He3

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Aliases: C2×C9.6He3, C18.5He3, He3.4C18, C18.23- 1+2, 3- 1+2.2C18, C27⋊C33C6, (C3×C54)⋊3C3, (C3×C27)⋊10C6, C9.5(C2×He3), C9○He3.4C6, (C2×He3).2C9, C32.4(C3×C18), C6.10(C32⋊C9), (C3×C18).25C32, C9.2(C2×3- 1+2), (C2×3- 1+2).2C9, (C2×C27⋊C3)⋊3C3, (C3×C6).4(C3×C9), (C3×C9).34(C3×C6), C3.10(C2×C32⋊C9), (C2×C9○He3).2C3, SmallGroup(486,80)

Series: Derived Chief Lower central Upper central

C1C32 — C2×C9.6He3
C1C3C9C3×C9C9○He3C9.6He3 — C2×C9.6He3
C1C3C32 — C2×C9.6He3
C1C18C3×C18 — C2×C9.6He3

Generators and relations for C2×C9.6He3
 G = < a,b,c,d,e | a2=b9=c3=d3=1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=b6c, ece-1=b6cd-1, ede-1=b3d >

3C3
9C3
3C6
9C6
3C32
3C9
3C9
3C18
3C18
3C3×C6
33- 1+2
3C3×C9
3C27
3C27
33- 1+2
3C27
3C2×3- 1+2
3C3×C18
3C2×3- 1+2
3C54
3C54
3C54

Smallest permutation representation of C2×C9.6He3
On 162 points
Generators in S162
(1 51)(2 52)(3 53)(4 54)(5 28)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 40)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 48)(26 49)(27 50)(55 112)(56 113)(57 114)(58 115)(59 116)(60 117)(61 118)(62 119)(63 120)(64 121)(65 122)(66 123)(67 124)(68 125)(69 126)(70 127)(71 128)(72 129)(73 130)(74 131)(75 132)(76 133)(77 134)(78 135)(79 109)(80 110)(81 111)(82 147)(83 148)(84 149)(85 150)(86 151)(87 152)(88 153)(89 154)(90 155)(91 156)(92 157)(93 158)(94 159)(95 160)(96 161)(97 162)(98 136)(99 137)(100 138)(101 139)(102 140)(103 141)(104 142)(105 143)(106 144)(107 145)(108 146)
(1 4 7 10 13 16 19 22 25)(2 5 8 11 14 17 20 23 26)(3 6 9 12 15 18 21 24 27)(28 31 34 37 40 43 46 49 52)(29 32 35 38 41 44 47 50 53)(30 33 36 39 42 45 48 51 54)(55 58 61 64 67 70 73 76 79)(56 59 62 65 68 71 74 77 80)(57 60 63 66 69 72 75 78 81)(82 85 88 91 94 97 100 103 106)(83 86 89 92 95 98 101 104 107)(84 87 90 93 96 99 102 105 108)(109 112 115 118 121 124 127 130 133)(110 113 116 119 122 125 128 131 134)(111 114 117 120 123 126 129 132 135)(136 139 142 145 148 151 154 157 160)(137 140 143 146 149 152 155 158 161)(138 141 144 147 150 153 156 159 162)
(1 124 88)(2 134 98)(3 135 90)(4 127 91)(5 110 101)(6 111 93)(7 130 94)(8 113 104)(9 114 96)(10 133 97)(11 116 107)(12 117 99)(13 109 100)(14 119 83)(15 120 102)(16 112 103)(17 122 86)(18 123 105)(19 115 106)(20 125 89)(21 126 108)(22 118 82)(23 128 92)(24 129 84)(25 121 85)(26 131 95)(27 132 87)(28 80 139)(29 81 158)(30 73 159)(31 56 142)(32 57 161)(33 76 162)(34 59 145)(35 60 137)(36 79 138)(37 62 148)(38 63 140)(39 55 141)(40 65 151)(41 66 143)(42 58 144)(43 68 154)(44 69 146)(45 61 147)(46 71 157)(47 72 149)(48 64 150)(49 74 160)(50 75 152)(51 67 153)(52 77 136)(53 78 155)(54 70 156)
(2 11 20)(3 21 12)(5 14 23)(6 24 15)(8 17 26)(9 27 18)(28 37 46)(29 47 38)(31 40 49)(32 50 41)(34 43 52)(35 53 44)(55 64 73)(56 74 65)(58 67 76)(59 77 68)(61 70 79)(62 80 71)(82 100 91)(84 93 102)(85 103 94)(87 96 105)(88 106 97)(90 99 108)(109 118 127)(110 128 119)(112 121 130)(113 131 122)(115 124 133)(116 134 125)(137 146 155)(138 156 147)(140 149 158)(141 159 150)(143 152 161)(144 162 153)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162)

G:=sub<Sym(162)| (1,51)(2,52)(3,53)(4,54)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(27,50)(55,112)(56,113)(57,114)(58,115)(59,116)(60,117)(61,118)(62,119)(63,120)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,109)(80,110)(81,111)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,153)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,161)(97,162)(98,136)(99,137)(100,138)(101,139)(102,140)(103,141)(104,142)(105,143)(106,144)(107,145)(108,146), (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54)(55,58,61,64,67,70,73,76,79)(56,59,62,65,68,71,74,77,80)(57,60,63,66,69,72,75,78,81)(82,85,88,91,94,97,100,103,106)(83,86,89,92,95,98,101,104,107)(84,87,90,93,96,99,102,105,108)(109,112,115,118,121,124,127,130,133)(110,113,116,119,122,125,128,131,134)(111,114,117,120,123,126,129,132,135)(136,139,142,145,148,151,154,157,160)(137,140,143,146,149,152,155,158,161)(138,141,144,147,150,153,156,159,162), (1,124,88)(2,134,98)(3,135,90)(4,127,91)(5,110,101)(6,111,93)(7,130,94)(8,113,104)(9,114,96)(10,133,97)(11,116,107)(12,117,99)(13,109,100)(14,119,83)(15,120,102)(16,112,103)(17,122,86)(18,123,105)(19,115,106)(20,125,89)(21,126,108)(22,118,82)(23,128,92)(24,129,84)(25,121,85)(26,131,95)(27,132,87)(28,80,139)(29,81,158)(30,73,159)(31,56,142)(32,57,161)(33,76,162)(34,59,145)(35,60,137)(36,79,138)(37,62,148)(38,63,140)(39,55,141)(40,65,151)(41,66,143)(42,58,144)(43,68,154)(44,69,146)(45,61,147)(46,71,157)(47,72,149)(48,64,150)(49,74,160)(50,75,152)(51,67,153)(52,77,136)(53,78,155)(54,70,156), (2,11,20)(3,21,12)(5,14,23)(6,24,15)(8,17,26)(9,27,18)(28,37,46)(29,47,38)(31,40,49)(32,50,41)(34,43,52)(35,53,44)(55,64,73)(56,74,65)(58,67,76)(59,77,68)(61,70,79)(62,80,71)(82,100,91)(84,93,102)(85,103,94)(87,96,105)(88,106,97)(90,99,108)(109,118,127)(110,128,119)(112,121,130)(113,131,122)(115,124,133)(116,134,125)(137,146,155)(138,156,147)(140,149,158)(141,159,150)(143,152,161)(144,162,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162)>;

G:=Group( (1,51)(2,52)(3,53)(4,54)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(27,50)(55,112)(56,113)(57,114)(58,115)(59,116)(60,117)(61,118)(62,119)(63,120)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,109)(80,110)(81,111)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,153)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,161)(97,162)(98,136)(99,137)(100,138)(101,139)(102,140)(103,141)(104,142)(105,143)(106,144)(107,145)(108,146), (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54)(55,58,61,64,67,70,73,76,79)(56,59,62,65,68,71,74,77,80)(57,60,63,66,69,72,75,78,81)(82,85,88,91,94,97,100,103,106)(83,86,89,92,95,98,101,104,107)(84,87,90,93,96,99,102,105,108)(109,112,115,118,121,124,127,130,133)(110,113,116,119,122,125,128,131,134)(111,114,117,120,123,126,129,132,135)(136,139,142,145,148,151,154,157,160)(137,140,143,146,149,152,155,158,161)(138,141,144,147,150,153,156,159,162), (1,124,88)(2,134,98)(3,135,90)(4,127,91)(5,110,101)(6,111,93)(7,130,94)(8,113,104)(9,114,96)(10,133,97)(11,116,107)(12,117,99)(13,109,100)(14,119,83)(15,120,102)(16,112,103)(17,122,86)(18,123,105)(19,115,106)(20,125,89)(21,126,108)(22,118,82)(23,128,92)(24,129,84)(25,121,85)(26,131,95)(27,132,87)(28,80,139)(29,81,158)(30,73,159)(31,56,142)(32,57,161)(33,76,162)(34,59,145)(35,60,137)(36,79,138)(37,62,148)(38,63,140)(39,55,141)(40,65,151)(41,66,143)(42,58,144)(43,68,154)(44,69,146)(45,61,147)(46,71,157)(47,72,149)(48,64,150)(49,74,160)(50,75,152)(51,67,153)(52,77,136)(53,78,155)(54,70,156), (2,11,20)(3,21,12)(5,14,23)(6,24,15)(8,17,26)(9,27,18)(28,37,46)(29,47,38)(31,40,49)(32,50,41)(34,43,52)(35,53,44)(55,64,73)(56,74,65)(58,67,76)(59,77,68)(61,70,79)(62,80,71)(82,100,91)(84,93,102)(85,103,94)(87,96,105)(88,106,97)(90,99,108)(109,118,127)(110,128,119)(112,121,130)(113,131,122)(115,124,133)(116,134,125)(137,146,155)(138,156,147)(140,149,158)(141,159,150)(143,152,161)(144,162,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162) );

G=PermutationGroup([[(1,51),(2,52),(3,53),(4,54),(5,28),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,40),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,48),(26,49),(27,50),(55,112),(56,113),(57,114),(58,115),(59,116),(60,117),(61,118),(62,119),(63,120),(64,121),(65,122),(66,123),(67,124),(68,125),(69,126),(70,127),(71,128),(72,129),(73,130),(74,131),(75,132),(76,133),(77,134),(78,135),(79,109),(80,110),(81,111),(82,147),(83,148),(84,149),(85,150),(86,151),(87,152),(88,153),(89,154),(90,155),(91,156),(92,157),(93,158),(94,159),(95,160),(96,161),(97,162),(98,136),(99,137),(100,138),(101,139),(102,140),(103,141),(104,142),(105,143),(106,144),(107,145),(108,146)], [(1,4,7,10,13,16,19,22,25),(2,5,8,11,14,17,20,23,26),(3,6,9,12,15,18,21,24,27),(28,31,34,37,40,43,46,49,52),(29,32,35,38,41,44,47,50,53),(30,33,36,39,42,45,48,51,54),(55,58,61,64,67,70,73,76,79),(56,59,62,65,68,71,74,77,80),(57,60,63,66,69,72,75,78,81),(82,85,88,91,94,97,100,103,106),(83,86,89,92,95,98,101,104,107),(84,87,90,93,96,99,102,105,108),(109,112,115,118,121,124,127,130,133),(110,113,116,119,122,125,128,131,134),(111,114,117,120,123,126,129,132,135),(136,139,142,145,148,151,154,157,160),(137,140,143,146,149,152,155,158,161),(138,141,144,147,150,153,156,159,162)], [(1,124,88),(2,134,98),(3,135,90),(4,127,91),(5,110,101),(6,111,93),(7,130,94),(8,113,104),(9,114,96),(10,133,97),(11,116,107),(12,117,99),(13,109,100),(14,119,83),(15,120,102),(16,112,103),(17,122,86),(18,123,105),(19,115,106),(20,125,89),(21,126,108),(22,118,82),(23,128,92),(24,129,84),(25,121,85),(26,131,95),(27,132,87),(28,80,139),(29,81,158),(30,73,159),(31,56,142),(32,57,161),(33,76,162),(34,59,145),(35,60,137),(36,79,138),(37,62,148),(38,63,140),(39,55,141),(40,65,151),(41,66,143),(42,58,144),(43,68,154),(44,69,146),(45,61,147),(46,71,157),(47,72,149),(48,64,150),(49,74,160),(50,75,152),(51,67,153),(52,77,136),(53,78,155),(54,70,156)], [(2,11,20),(3,21,12),(5,14,23),(6,24,15),(8,17,26),(9,27,18),(28,37,46),(29,47,38),(31,40,49),(32,50,41),(34,43,52),(35,53,44),(55,64,73),(56,74,65),(58,67,76),(59,77,68),(61,70,79),(62,80,71),(82,100,91),(84,93,102),(85,103,94),(87,96,105),(88,106,97),(90,99,108),(109,118,127),(110,128,119),(112,121,130),(113,131,122),(115,124,133),(116,134,125),(137,146,155),(138,156,147),(140,149,158),(141,159,150),(143,152,161),(144,162,153)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162)]])

102 conjugacy classes

class 1  2 3A3B3C3D3E3F6A6B6C6D6E6F9A···9F9G9H9I9J9K9L9M9N18A···18F18G18H18I18J18K18L18M18N27A···27R27S···27AD54A···54R54S···54AD
order123333336666669···99999999918···18181818181818181827···2727···2754···5454···54
size111133991133991···1333399991···1333399993···39···93···39···9

102 irreducible representations

dim111111111111333333
type++
imageC1C2C3C3C3C6C6C6C9C9C18C18He33- 1+2C2×He3C2×3- 1+2C9.6He3C2×C9.6He3
kernelC2×C9.6He3C9.6He3C3×C54C2×C27⋊C3C2×C9○He3C3×C27C27⋊C3C9○He3C2×He3C2×3- 1+2He33- 1+2C18C18C9C9C2C1
# reps1124224261261224241818

Matrix representation of C2×C9.6He3 in GL3(𝔽109) generated by

10800
01080
00108
,
2700
0270
0027
,
63440
0461
0640
,
100
63450
108063
,
7170
010297
1021040
G:=sub<GL(3,GF(109))| [108,0,0,0,108,0,0,0,108],[27,0,0,0,27,0,0,0,27],[63,0,0,44,46,64,0,1,0],[1,63,108,0,45,0,0,0,63],[7,0,102,17,102,104,0,97,0] >;

C2×C9.6He3 in GAP, Magma, Sage, TeX

C_2\times C_9._6{\rm He}_3
% in TeX

G:=Group("C2xC9.6He3");
// GroupNames label

G:=SmallGroup(486,80);
// by ID

G=gap.SmallGroup(486,80);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,224,2169,735,208]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^9=c^3=d^3=1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=b^6*c,e*c*e^-1=b^6*c*d^-1,e*d*e^-1=b^3*d>;
// generators/relations

Export

Subgroup lattice of C2×C9.6He3 in TeX

׿
×
𝔽