Extensions 1→N→G→Q→1 with N=C3×C3≀C3 and Q=C2

Direct product G=N×Q with N=C3×C3≀C3 and Q=C2
dρLabelID
C6×C3≀C354C6xC3wrC3486,210

Semidirect products G=N:Q with N=C3×C3≀C3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C3≀C3)⋊1C2 = C3×C33⋊S3φ: C2/C1C2 ⊆ Out C3×C3≀C3186(C3xC3wrC3):1C2486,165
(C3×C3≀C3)⋊2C2 = C347S3φ: C2/C1C2 ⊆ Out C3×C3≀C327(C3xC3wrC3):2C2486,185
(C3×C3≀C3)⋊3C2 = C3×C3≀S3φ: C2/C1C2 ⊆ Out C3×C3≀C327(C3xC3wrC3):3C2486,115
(C3×C3≀C3)⋊4C2 = C3×C33⋊C6φ: C2/C1C2 ⊆ Out C3×C3≀C3186(C3xC3wrC3):4C2486,116
(C3×C3≀C3)⋊5C2 = S3×C3≀C3φ: C2/C1C2 ⊆ Out C3×C3≀C3186(C3xC3wrC3):5C2486,117
(C3×C3≀C3)⋊6C2 = C345S3φ: C2/C1C2 ⊆ Out C3×C3≀C3186(C3xC3wrC3):6C2486,166
(C3×C3≀C3)⋊7C2 = C345C6φ: C2/C1C2 ⊆ Out C3×C3≀C327(C3xC3wrC3):7C2486,167


׿
×
𝔽