Extensions 1→N→G→Q→1 with N=C3×He3.C3 and Q=C2

Direct product G=N×Q with N=C3×He3.C3 and Q=C2
dρLabelID
C6×He3.C3162C6xHe3.C3486,211

Semidirect products G=N:Q with N=C3×He3.C3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×He3.C3)⋊1C2 = C3×He3.3S3φ: C2/C1C2 ⊆ Out C3×He3.C3546(C3xHe3.C3):1C2486,168
(C3×He3.C3)⋊2C2 = He3.(C3⋊S3)φ: C2/C1C2 ⊆ Out C3×He3.C381(C3xHe3.C3):2C2486,186
(C3×He3.C3)⋊3C2 = C3×He3.S3φ: C2/C1C2 ⊆ Out C3×He3.C3546(C3xHe3.C3):3C2486,119
(C3×He3.C3)⋊4C2 = C324D9⋊C3φ: C2/C1C2 ⊆ Out C3×He3.C381(C3xHe3.C3):4C2486,170
(C3×He3.C3)⋊5C2 = C3×He3.C6φ: C2/C1C2 ⊆ Out C3×He3.C381(C3xHe3.C3):5C2486,118
(C3×He3.C3)⋊6C2 = S3×He3.C3φ: C2/C1C2 ⊆ Out C3×He3.C3546(C3xHe3.C3):6C2486,120
(C3×He3.C3)⋊7C2 = He3.C3⋊S3φ: C2/C1C2 ⊆ Out C3×He3.C3546(C3xHe3.C3):7C2486,169


׿
×
𝔽