Extensions 1→N→G→Q→1 with N=C3×He3⋊C3 and Q=C2

Direct product G=N×Q with N=C3×He3⋊C3 and Q=C2
dρLabelID
C6×He3⋊C3162C6xHe3:C3486,212

Semidirect products G=N:Q with N=C3×He3⋊C3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×He3⋊C3)⋊1C2 = C3×He3.2C6φ: C2/C1C2 ⊆ Out C3×He3⋊C381(C3xHe3:C3):1C2486,121
(C3×He3⋊C3)⋊2C2 = S3×He3⋊C3φ: C2/C1C2 ⊆ Out C3×He3⋊C3546(C3xHe3:C3):2C2486,123
(C3×He3⋊C3)⋊3C2 = He3⋊C32S3φ: C2/C1C2 ⊆ Out C3×He3⋊C3546(C3xHe3:C3):3C2486,172
(C3×He3⋊C3)⋊4C2 = C3×He3.2S3φ: C2/C1C2 ⊆ Out C3×He3⋊C3546(C3xHe3:C3):4C2486,122
(C3×He3⋊C3)⋊5C2 = C3×He3⋊S3φ: C2/C1C2 ⊆ Out C3×He3⋊C3546(C3xHe3:C3):5C2486,171
(C3×He3⋊C3)⋊6C2 = He3⋊C33S3φ: C2/C1C2 ⊆ Out C3×He3⋊C381(C3xHe3:C3):6C2486,173
(C3×He3⋊C3)⋊7C2 = C3⋊(He3⋊S3)φ: C2/C1C2 ⊆ Out C3×He3⋊C381(C3xHe3:C3):7C2486,187


׿
×
𝔽