Extensions 1→N→G→Q→1 with N=3- 1+2 and Q=C3×S3

Direct product G=N×Q with N=3- 1+2 and Q=C3×S3
dρLabelID
C3×S3×3- 1+254C3xS3xES-(3,1)486,225

Semidirect products G=N:Q with N=3- 1+2 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
3- 1+21(C3×S3) = C3×C33⋊S3φ: C3×S3/C3S3 ⊆ Out 3- 1+2186ES-(3,1):1(C3xS3)486,165
3- 1+22(C3×S3) = C3×He3.3S3φ: C3×S3/C3S3 ⊆ Out 3- 1+2546ES-(3,1):2(C3xS3)486,168
3- 1+23(C3×S3) = C33⋊(C3×S3)φ: C3×S3/C3S3 ⊆ Out 3- 1+22718+ES-(3,1):3(C3xS3)486,176
3- 1+24(C3×S3) = He3.C32C6φ: C3×S3/C3S3 ⊆ Out 3- 1+22718+ES-(3,1):4(C3xS3)486,177
3- 1+25(C3×S3) = S3×C3≀C3φ: C3×S3/S3C3 ⊆ Out 3- 1+2186ES-(3,1):5(C3xS3)486,117
3- 1+26(C3×S3) = S3×He3.C3φ: C3×S3/S3C3 ⊆ Out 3- 1+2546ES-(3,1):6(C3xS3)486,120
3- 1+27(C3×S3) = C3×C33.S3φ: C3×S3/C32C2 ⊆ Out 3- 1+254ES-(3,1):7(C3xS3)486,232
3- 1+28(C3×S3) = C3×He3.4S3φ: C3×S3/C32C2 ⊆ Out 3- 1+2546ES-(3,1):8(C3xS3)486,234
3- 1+29(C3×S3) = 3- 1+4⋊C2φ: C3×S3/C32C2 ⊆ Out 3- 1+22718+ES-(3,1):9(C3xS3)486,238
3- 1+210(C3×S3) = S3×C9○He3φ: trivial image546ES-(3,1):10(C3xS3)486,226

Non-split extensions G=N.Q with N=3- 1+2 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
3- 1+2.1(C3×S3) = C3×3- 1+2.S3φ: C3×S3/C3S3 ⊆ Out 3- 1+2546ES-(3,1).1(C3xS3)486,174
3- 1+2.2(C3×S3) = C3.He3⋊C6φ: C3×S3/C3S3 ⊆ Out 3- 1+22718+ES-(3,1).2(C3xS3)486,179
3- 1+2.3(C3×S3) = S3×C3.He3φ: C3×S3/S3C3 ⊆ Out 3- 1+2546ES-(3,1).3(C3xS3)486,124

׿
×
𝔽