Extensions 1→N→G→Q→1 with N=3- 1+2 and Q=C3:S3

Direct product G=NxQ with N=3- 1+2 and Q=C3:S3
dρLabelID
C3:S3x3- 1+254C3:S3xES-(3,1)486,233

Semidirect products G=N:Q with N=3- 1+2 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
3- 1+2:1(C3:S3) = C34:7S3φ: C3:S3/C3S3 ⊆ Out 3- 1+227ES-(3,1):1(C3:S3)486,185
3- 1+2:2(C3:S3) = He3.(C3:S3)φ: C3:S3/C3S3 ⊆ Out 3- 1+281ES-(3,1):2(C3:S3)486,186
3- 1+2:3(C3:S3) = C34.11S3φ: C3:S3/C32C2 ⊆ Out 3- 1+281ES-(3,1):3(C3:S3)486,244
3- 1+2:4(C3:S3) = C9oHe3:3S3φ: C3:S3/C32C2 ⊆ Out 3- 1+281ES-(3,1):4(C3:S3)486,245

Non-split extensions G=N.Q with N=3- 1+2 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
3- 1+2.1(C3:S3) = (C32xC9).S3φ: C3:S3/C3S3 ⊆ Out 3- 1+281ES-(3,1).1(C3:S3)486,188
3- 1+2.2(C3:S3) = C3wrC3:S3φ: C3:S3/C3S3 ⊆ Out 3- 1+2276+ES-(3,1).2(C3:S3)486,189
3- 1+2.3(C3:S3) = 3- 1+4:2C2φ: trivial image279ES-(3,1).3(C3:S3)486,239

׿
x
:
Z
F
o
wr
Q
<