Extensions 1→N→G→Q→1 with N=C62 and Q=C2xC4

Direct product G=NxQ with N=C62 and Q=C2xC4
dρLabelID
C22xC124496C2^2xC124496,37

Semidirect products G=N:Q with N=C62 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
C62:1(C2xC4) = C2xC4xD31φ: C2xC4/C4C2 ⊆ Aut C62248C62:1(C2xC4)496,28
C62:2(C2xC4) = C22xDic31φ: C2xC4/C22C2 ⊆ Aut C62496C62:2(C2xC4)496,35

Non-split extensions G=N.Q with N=C62 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
C62.1(C2xC4) = C8xD31φ: C2xC4/C4C2 ⊆ Aut C622482C62.1(C2xC4)496,3
C62.2(C2xC4) = C8:D31φ: C2xC4/C4C2 ⊆ Aut C622482C62.2(C2xC4)496,4
C62.3(C2xC4) = C4xDic31φ: C2xC4/C4C2 ⊆ Aut C62496C62.3(C2xC4)496,10
C62.4(C2xC4) = Dic31:C4φ: C2xC4/C4C2 ⊆ Aut C62496C62.4(C2xC4)496,11
C62.5(C2xC4) = D62:C4φ: C2xC4/C4C2 ⊆ Aut C62248C62.5(C2xC4)496,13
C62.6(C2xC4) = C2xC31:C8φ: C2xC4/C22C2 ⊆ Aut C62496C62.6(C2xC4)496,8
C62.7(C2xC4) = C4.Dic31φ: C2xC4/C22C2 ⊆ Aut C622482C62.7(C2xC4)496,9
C62.8(C2xC4) = C4:Dic31φ: C2xC4/C22C2 ⊆ Aut C62496C62.8(C2xC4)496,12
C62.9(C2xC4) = C23.D31φ: C2xC4/C22C2 ⊆ Aut C62248C62.9(C2xC4)496,18
C62.10(C2xC4) = C22:C4xC31central extension (φ=1)248C62.10(C2xC4)496,20
C62.11(C2xC4) = C4:C4xC31central extension (φ=1)496C62.11(C2xC4)496,21
C62.12(C2xC4) = M4(2)xC31central extension (φ=1)2482C62.12(C2xC4)496,23

׿
x
:
Z
F
o
wr
Q
<